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CANONICAL MODELS FOR INVARIANT SUBSPACES

MicHAEL MCASEY

The invariant subspace structure of an operator algebra
¢, is completely determined. The non-selfadjoint algebra is
constructed from a cyclic transformation acting on a finite set.
There is a distinguished (finite) set of invariant subspaces of
¢, which has been identified elsewhere. These subspaces are
used as canonical models; all other invariant subspaces for <,
are described in terms of these subspaces. Uniqueness of this
representation is also discussed.

1. Introduction. This paper is a continuation of [5]. While
some acquaintance with [5] would be helpful in reading the present
paper, it is not absolutely necessary. Here we determine completely
the invariant subspace structure of an operator algebra 2. con-
structed from a cyclic transformation on a finite set. (The defini-
tions of £, and an allied algebra R, are given below.) As shown
in [5] there is a distinguished class of subspaces invariant for both
2, and N,. We shall show that the invariant subspaces for L.
can be completely deseribed in terms of these distinguished subspaces
in much the same spirit as Buerling’s theorem describes the invariant
subspaces of the shift.

To define the algebras 2. and R,, let X be a finite set with
elements x, x, ---, x,_, and let ¢ be the permutation of X defined
by z(x,) = ;.. (t = n — 1) and z(x,_) = x,. Let Z denote the set of
integers and let IA(Zx X) be the Hilbert space of all (complex-valued)
functions f on Z X X such that >, 3.1 f(n, ©)? < . Let f be an
element of I*(Z X X) and define operators L; and R, on I3(Z X X) as
follows:

(Lf)(n, ) = f(n — 1, z72); (B.f)(n, ) = f(n — 1, 2) .

For a complex-valued function @ defined on X (i.e., @ el*(X)), we
define operators L, and R, on I*(Z X X):

(Lo f)(m, 2) = P(x) f (0, x); (Rof)(n, x) = p(z"x)f(n, ®) .

Let M, = {L,|pel~(X)} and M, = {R,|pel=(X)}. The algebra &
(resp. N) is defined to be the von Neumann algebra generated by
L; and I, (resp. R, and ;). Finally we define the non-selfadjoint
algebra &, (resp. NR,) to be the weakly closed algebra generated
by L, and I, (resp. R, and IM;).

The algebras € and R are crossed products and 2, and R, are
called mnon-selfadjoint crossed products. We refer the reader to
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[5, 6] for discussions of these algebras including some of their ele-
mentary properties. It should be noted that one of the principal
results of [5] identifies the equivalence classes of £.-invariant sub-
spaces that are unitarily equivalent by a wnitary operator in R.
Each such class can also be described in terms of a multiplicity
function. These funections play an important role in this paper (ef.
§3) for, as we shall see, the multiplicity function will allow us to
identify a canonical subspace in each equivalence class of £,-invar-
iant subspaces.

It is shown in [5] that for certain subsets B of Z X X, sub-
spaces of the form I*(B) = {fel*(Z x X)|f(n,2) =0 for (m, x)¢ B}
are invariant under both the algebras 8, and R.. Such a set B
must be invariant under the two maps % and p defined on Z x X
as follows:

Mn, ) = (n 4+ 1, )
on, x) =(n + 1, x) .

In case 7 is a nonperiodic transformation on a measure space X as
discussed in [5], all &, V R,-invariant subspaces have the form
I*(B). As shown in §5 of [5], this is not the case when 7 is a
periodic transformation acting on a finite discrete set, as considered
here.

In this paper we shall show that the ¥, Vv R,-invariant sub-
spaces of the form [*(B) are sufficiently plentiful to allow us to
describe all the pure 8,-invariant subspaces in terms of these more
elementary ones. (A pure subspace is one that contains no nonzero
subspace reducing 8..) The idea is to use subspaces of the form
I*(B) as canonical models for the 2.-invariant subspaces. This con-
cept is made precise in the following definition. (For a subspace
A4, P_, denotes the orthogonal projection onto _#".)

DEFINITION. A family of full, pure invariant subspaces {_#},.;
constitutes a complete set of canonical models for the pure £.-
invariant subspaces in case (a) for no two distinet indices 7 and j7
is P, unitarily equivalent to P v by a unitary operator in R; and
(b) for every pure 2.-invariant subspace .# there is an ¢ in I and
a partial isometry R, in R such that RyP , R} = P,.

In particular the last equation implies that .#Z = R, #,. The
motivation for this concept stems from Beurling’s theorem. Recall
that this theorem states that if .2 is a (nonzero) nonreducing sub-
space for the bilateral shift on L* (of the unit cirecle), then . Z =
OH*® where 6 is a unimodular function on the circle. In this case
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the singleton {H? is a complete set of canonical models for the pure
invariant subspaces of the shift. A similar result is valid if we
consider the non-selfadjoint crossed product determined by a factor
(of a special kind) and an automorphism implemented by a unitary
operator acting on the factor. In this case also a single subspace,
I¥Z,, 57), forms a complete set of canonical models for the invari-
ant subspaces of the algebra £, as shown in [6]. It is shown in
[5], with the particular algebra ¥, as we have defined it here,
that there are pure subspaces .# and _¢  invariant for 2, for
which there is no partial isometry R, in R satisfying R,P ,Rf=P_,;
thus a set of canonical models will necessarily consist of more than
one subspace in the situation considered here. In this paper it will
be shown that a finite collection of subspaces of the form I[*(B)
provides a complete set of canonical models for the (pure) 8.-invari-
ant subspaces. Moreover, it will be seen that in this case the
multiplicity function provides the necessary information for explicitly
construecting the subspace from the canonical model.

Taking into account the results of [5], this is what we will
have accomplished: we will have classified the invariant subspaces
of 2, up to a specific kind of equivalence and we will have identi-
fied a canonical member of each equivalence class. Moreover we
will have done this in a fashion which is identical in spirit with
that exhibited in two other contexts in which reasonably successful
generalizations of the theory of shifts have been found, namely,
the theory of invariant subspaces on multiply connected domains [1]
and the theory of compact groups with ordered duals [4].

2. Alternative representations of £ and R. The algebras ¢
and R have been discussed in [5] under different hypotheses on
X and 7. One major difference between the algebras £ and R
considered in §4 of [5] and those in this paper is that in [5] &
and R are factors while here they are not factors. Indeed a com-
putation using the periodicity of = shows that L% = R? where,
recall, n is the cardinality of the set X. Since £ and R are com-
mutants of one another, it follows that & and R have nontrivial
centers and so are not factors. As a consequence of the representa-
tion developed in this section, we show that the center of & (and
of R) is the von Neumann algebra generated by L7%.

In this section we shall show how the algebras £ and R may
be viewed as the left and right regular representations of the
algebra of all » X n-matrices with entries from L=(T), the (essen-
tially) bounded functions on the circle. In order to do this, an
isomorphism will be constructed between the spaces I*(Z x X) and
LY{T)® M,. This second space will be viewed as the set of = X n-
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matrices with entries from LXT). It is a Hilbert space with inner
product

(fabs [95) = S| fo@as@de
for elements [f;;] and [g,;] in LXT)® M,. (The norm on M, here
is the Hilbert-Schmidt norm.) The algebra & (resp. R) will be
realized as the algebra L~(T) X M, acting by left (resp. right)
multiplication on the space LXT) X M,.

The isomorphism mentioned above will be constructed by mapp-
ing one basis to another. The set <& of indicator (or characteristic)
functions of singletons {l,,.,|7€Z, xe X} is an orthonormal basis
for the space I*(Z X X). For the other basis, let E;; be the n X n-
matrix whose only nonzero entry is a 1 in the (4, j)th position. Let
X, be the function on the circle defined by X,(z) = 2". The set <&, =
{XE;|1,5=1,2, ---, n; ke Z} is an orthonormal basis for the Hilbert
space L(T)X M,. (We assume that the measure on the circle is
normalized Lebesgue measure.)

There are several ways to define the map W from <Z to <Z.
For an easy way, first let 6 be the function defined on Z X X by

o(n, ) = {(1) ?’:; i’ and define

000--- %,

100--- 0
Wo={010--- 0

000---10

DEFINITION. The map W:.<Z — <%, is defined first on Dbasis
elements Of the fOI‘m 1((0'%)}: Wl{(o’zo)):E,,m, Wl{(o,wi)} = E”('iio)- For
other elements of <7, let

Wl((k,avi)) = Wluo,xi);(Wa)k .

Observe that the operator L; (resp. R;) acting on the basis <
of IZ x X) is transformed into left (resp. right) multiplication by
Wo on LYT) R M,.

The action of W on the bases can be extended to a Hilbert
space isomorphism from [*(Z X X) to LA(T)Q M,. The map W has
one other important feature: it is multiplicative on the bases on
which it is defined. Let L= {f €l*(Z X X)|f(n, x) = 0 for all but
finitely many n}. For elements f and ¢ in L}, we define a multipli-
cation as follows:
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(Fr)m, @) =3 f(k, 2)gln — b, =) .

The bounded elements of 1(Z X X) are defined to be those functions
f such that g+ fx¢g is a bounded operation on LI The set of
bounded elements is denoted by L=. Note that by definition L> &
(Z x X). (Our notation coincides with that in [6].) An example
of a bounded element is the function 6 defined above. A computa-
tion shows that ¢ dxg (resp. g g*d) is simply the operator L,
(resp. R;) acting on ¢g. It is shown in [5] that the algebra of left
(resp. right) multiplications by elements of L> is precisely the
algebra £ (resp. RN). Accordingly we shall use the notation L, for
left multiplication by an element f in L*. Although slightly tedi-
ous, the proof of the following theorem is not difficult and is left
to the reader.

THEOREM 2.1. The map W is a Hilbert space isomorphism
from ¥(Z x X) onto LN (T)QRQ M, such that WL W™ = Ly,; and
WR; W™ = Ry,; for f in L*.

Since W is an isomorphism, it follows immediately that WW—*
is a von Neumann subalgebra of the bounded operators on L*(T)®
M,. This subalgebra is identified in the following corollary. (From
now on, most results will be stated for the left algebra &; corres-
ponding statements for the algebra R will be left to the reader.)

COROLLARY 2.2. The algebra WRW™' is isomorphic to the algebra
L>(T) X M, acting by left multiplication on LN(T) R M,.

Proof. Recall that we treat L*(T) X M, as the set of n X n-
matrices with entries from L*(T). Consider the subalgebra £, of
8 defined by 8 = {L;|feLi. Then W&gW is the algebra of
7 X n-matrices with “polynomial” entries acting by left multiplica-
tion on the space LX(T)QR M,. So for L; in ¥, WL, W™ is left
multiplication by a matrix [p,;] where for each 4 and j, p,; is a
polynomial of the form > °_raX(a,€C). The weak closure of
WeW is WEW' and thus WEW™ 1is simply the algebra
L>(T)® M, thought of as acting by left multiplication on L} T)&
M,

Since the algebra € is a generalization of the algebra L~(T)
and since 8, is designed to generalize H=(T), the subspace of L~(T)
consisting of functions whose Fourier coefficients of negative index
vanish, it is tempting to say that WQ. W= is the algebra H>(T)X
M,. However, as the next two results show, this is not quite the
case.
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COROLLARY 2.3. The algebra W, W™ consists of the matrices
[a;;] in H=(T)Q M, having the property that @;;(0) =0 if a,; lies
above the main diagonal. That is,

H~ H” --- H
H> H>-.. H

W8 W= . .
H> H*--- H

where Hy = {f € H*|£(0) = 0}.

Proof. Since 2. = {Ls|fe L=, f(n, -) =0, n <0} and L*SI(Zx
X), any function f such that L, is in 2. is also in I*(Z, X X).
(Z.=1{0,1,2, ---}.) Using the definition of W6 and the form of
(Wo)* for k = 0, it follows that WR. W & H=(T) ® M,.

To see that W8, W' has the stated matricial form, it suffices
to show that if =0 and Wl,., = X.E, with a < g then & is
strictly greater than zero. But Wl;.,, = E,,(Wo)’ where p =1 if
l#0 and p=n if 1l =0. For j =0, the nonzero elements on or
above the main diagonal of (W?)’ are positive powers of X,. Since
X* = X,, the result follows.

REMARK 2.4. (1) In view of 2.3, it is clear that the algebras
W&, W and H=(T)® M, should not be isomorphic. The follow-
ing proof that they, in fact, are not isomorphic is due to K.R.
Fuller. In this remark, H>= will always be used to denote H=(T).
Note first that H;° is just the principal ideal zH=. Let

Ho°° H0°° H0°°
Hw H0°°...H°°
J=|" .
He H*... H>

T.hen J is a (two-sided) ideal in WR.W-' and W&, W'/J is the
ring
H«~[Hy He[Hy --- He[Hy
H°°:/H°° H~/Hy .' 0°;’/H0°° = HoHr @ - @ HoJH
H°°./H°° H=|H> ---'H";/HO""

(n summands). Thus W&, W has a commutative factor ring.
Recall that any (two-sided) ideal in H>&® M, has the form IR M,
where I is an ideal in H=. It follows that H~ @ M, has no com-
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mutative factor rings. Hence H>X® M, is not isomorphic to
W2+W_1.

(2) It was noted at the beginning of this section that the
algebras & and R are not factors. We now show how to identify
2°(Q), the center of &, as the von Neumann algebra generated by
L;. To do this we first write Ly, for the von Neumann algebra
of left multiplications by » X n-matrices acting on M,, and similarly
write R,, for the right multiplications. Let C. denote the algebra
of scalar multiples of the identity acting on the space 5#°. Then
Corollary 2.3 shows that 8= L=(T)® Ly, and & = R=L*(T)® Ru,.
Hence 2°(8)=28N% = (L(T)Q Ly,) N(L(T) K Ry,) = L>(T) ® (Ly, N
Ry,) = L(T)Q Cy, = {L3}".

3. Two-sided invariant subspaces and multiplicity functions,
Recall that a subspace that is invariant under both the algebras
Q. and R, is called a two-sided imvariant or L.V Ri-invariant
subspace. Under appropriate assumptions on X and 7, it can be
shown that for each two-sided invariant subspace .# there is a
subset B of Z X X invariant for the maps A and p defined in §1;
the subspace _# consists precisely of those functions in the Hilbert
space with support contained in B. As noted previously, this result
is not valid in case X is a finite discrete set and ¢ is a permuta-
tion. However, it is an easy computation to show that for any set
B in Zx X invariant for A and p, the subspace I*(B) is a two-sided
invariant subspace. The following remark collects several pertinent
observations concerning two-sided invariant subspaces of the form
I*(B).

REMARK 3.1. Let [*(B) be a (nontrivial) two-sided invariant
subspace.

(1) If the point (k, x) is in B then, by the p-invariance of
B, (k+ 1, ) is in B for any positive integer [.

(2) Let Z,,=1{k,k+1,k+2 ---}. There exists an integer
N with the property that the set Z,, X X contains B. This follows
from the fact that [*(B) is not the entire space I*(Z x X) and that
B is invariant for both maps M and p. If N is also chosen to be
the largest such integer, then B contains the set Zy.,, X X. In
particular I%(B) is a full, pure subspace for both the algebras 2.
and R;. (Reecall, an 8,-invariant subspace .# is &,-full in case the
smallest 2,-reducing subspace containing _# is I*(Z X X).)

(8) There exists a partition {E}i_. of X such that B =
UtczZu X E,. To construct this partition, let C = B\po(B). Then
E, = {xeX|(k, x)eCnN ({k} X X)}. Observe that all but finitely many
of the sets E, are empty. Since B is invariant for A, the partition
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{E,}; has the following “order” property: (&) & U;<i+: E;. This
property will be important in our discussion of multiplicity fune-
tions in Theorem 3.4.

(4) Recall that if _# is a left-invariant subspace, then & =
A O L, is a wandering subspace for L,., From Lemma 3.2 of
[5], we know that the projection P, onto & lies in N7, the
commutant of IN,. Hence P. can be written as Ps = >,..x P(x)
where each P(x) is a projection in F(X(Z X {x})). The multiplicity
Sfunction of the subspace 2 is the function m on X defined by

m(z) = rank P(x) = dimension of range of P(x).

PROPOSITION 3.2. Let I*(B) be a (nontrivial) two-sided invariant
subspace. Then there exists a set AC B such that I*(A) is the
wandering subspace for the operator L; associated with the subspace
I}(B).

Proof. The wandering subspace is by definition & = IXB)OS
L,lX(B) = I*(B) © I’((\MB)) = I*(B\\MB)). Let A = B\M(B).

In the terminology of ergodic theory, the set 4 is a wandering
subset of Z x X for the transformation n. We have found it help-
ful to represent subspaces of the form [*(B) by means of figures.
Since these subspaces consist of functions supported on the set B,
all information concerning such a subspace is codified in the set B.
To graph such a set, one may simply represent the set Z x X in
the obvious way as the set Zx {0,1,2, ---,n — 1} in the plane.
The graphical representation of subsets B in Z X X can be used to
illustrate the items of Remark 3.1 and Proposition 3.2 as well as
provide motivation for proofs of several theorems presented here.

ProprosiTIiON 3.3. Assume I*(B) is as in 3.2 and has the multi-
plicity function m. Then >.,.r mx)=mn, the cardinality of the set X.

Proof. Let A be the wandering set produced in 3.2. For an
element ¢ in X, define the set A, to be the intersection of the set
A and the “horizontal” slice through the point z: 4, = A N (Zx{x}).

Let P be the projection onto the wandering subspace ?(4). We
may write P= > ,.x P(x) as in 3.1.4. Clearly P(x) is the projection
onto I*(4,) for each x and so rank P(x) = dim I*(4,) = card 4,, the
cardinality of the set 4,. Thus it suffices to show that >,.,card
A, = n.

Using Remark 3.1.2, there exists a smallest integer k, such that
{k;} X X is contained in B. For any x there exists a positive integer
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J = j(x) such that A (k, x) is in B but »9+"(k, 2) is not in B. By
left invariance and the definition of the wandering set A, the point
Nk, ) = (k, — j, 77ix) lies in A. Thus associated with the =
distinet points (k,, x), (k,, ), - -, (k, ®,_,), we have their pre-images
under M in A and these pre-images must be distinct. This shows
that >, ycard 4, = n. But since L, is a shift of multiplicity =, it
follows (cf. [7]) that the dimension of the wandering subspace is
no larger than » and hence > ,., card 4, = n.

It is shown next that if m is any nonnegative integer-valued
function on X whose values sum to %, then m is a multiplicity
function. Moreover we construct ‘an explicit subspace for such a
function.

THEOREM 3.4. Let m be a function on X having values im the
nonnegative integers. If m has the propverty that ..., m(x) = n,
then there exists a two-sided invariant subspace with multivlicity
Junction m.

Proof. The proof is somewhat lengthy and is broken into three
steps. The first step consists of constructing a partition {E,}7-_.. of
X, in which all but finitely many of the sets E, will be empty. We
define the set B to be U,.» Zy X E,. The second step will be fo
show that the set B is invariant for the maps A and p. This
invariance can be translated into a property of the partition which
is then verified. The final step consists of showing that the subspace
I*(B) has the desired multiplicity function.

Step 1. Let {x,, x,, ---, «,,} be the support of m so that m(x)=*
0 if and only if = a, for some £k, 0=k = L. We will assume
By < 4y < -++ < 1;. Define the supplementary function s(-) on the
support by

0 k=20
. = k
T = S mlay) k0.
Let s = min{s(x;)|k=0,1, ---, L}, We can extend the function

s(+) to all of X as follows. For « outside the support of the multi-
plicity function, there exists a smallest positive integer % such that
¢ = thy with y esuppm. For such z define s(x) = s(y) + k.

Define the sets B, = {xe X|s(x) =s + k}, b =0,1, ---, 7. Clearly
{E,}l_, is a partition of X where 7 is the smallest positive integer
such that Uj-.E,=X. Let B=Ui-sZw X E,. Then I’(B)=
S IMZ,, X B,) is a subspace contained in [%(Z, X X).
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Step 2. Clearly I*(B) is invariant for the right algebra R.. To
show the subspace is invariant for 2., it suffices to show that B
is invariant for the map A. To accomplish this last objective, it
suffices to show that the partition has the following ‘order” pro-
perty:

T(Ek);UEj, k=0,1’2....
jsk+1

Finally, it follows from the definition of the partition that this
property will be demonstrated once we show s(z(x)) < s(x) + 1. The
proof of this inequality depends on whether or not x and z(x) lie in
the support of the multiplicity function. In case z(x) is not in the
support of m, the desired inequality follows immediately from the
definition of the supplementary function s(-).

Assume next that both 2 and z(x) are in the support of the
multiplicity function. Because 7 is cyclic, we shall assume initially
that # = #,, where k¥ < L. Then 7(») = x,;,,, = ®;,+,. But then

S(T@) = s — iy — 3 m(z)

k
=14, +1 -1 — ]_Z;lm(xij) — m(x;,,,) -

If &k =0, it follows that
s(z(@) =4 — 1, + 1 —m(x,) =0 =s(,) <s@@x +1.
If k0, then we have
s(z(x)) = s@) + 1 — m(x,,,,) = s(x) + 1.

Now suppose that x = «,, and both x and z(x) are in the support of
m. Then ;,, must be z,_, and 7(x) = x, so both z,, and =z, are in
the support of m. We know s(z(x)) = s(x,) = 0, so we need to show
s(x,..) +1=0. This is done as follows:

o) = (0 —1) =0 = Symlz) =n —1 = (n — m@) 2 0.

Thus s(x,,) + 1 =0 and hence s(x,) < s(x,_,) + 1.

Lastly, assume that z ¢ suppm and z(x) esuppm. In this case
s(@) = s(y) + k for some y as in the definition of the function s(.).
A computation similar to the preceding one shows that s(z(z)) <
s(x) + 1.

Step 8. The proof will be completed by showing that the
multiplicity function m, for the two-sided invariant subspace I*(B)
is equal to the original function m. It follows immediately from
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the definition of the partition that the supports of the functions m
and m, are identical. To show m = m,, it suffices to identify the
rwandering set A and show that m(x) = eard A4,.

We know that the wandering set is B\M(B). Let

A= Ll-,{a’r x); (l + 1, x); tt Sy (l + m(x)_l, x)!erlﬂsuppm} .

We shall show A = B\MB). Clearly A & B. Suppose AN MB)= Q.
Specifically, we may assume (by invertibility) the point (k¥ + =, ;)
in the intersection A NXN(B) satisfies Al + ny, x,,) = (b + %, %;,)
where »,, € E,, x, €E, 0=mn <mx,), 0=mn <m@,), and « is a
positive integer less than #. Observe that

7%(x;,) = a;, (so that a = (i, — 1,)(mod n))
and
(1) l+n+a=k+n,.

Due to the cyclic nature of =, we are forced into considering sepa-
rate cases. In each case, the point (k¥ + ., ;) cannotbe in ANA(B)
and hence this intersection will be empty.

For the first case, suppose i, < ¢, and 4, # 7,. We have

s(@,) = 1, — 1, — >, m(x,,)
=1
and
8(2;) = Ug — % — élm(wﬁ) .
Thus
E—l=s+k—(s+1
= s(xtq) — s(z;,)
q
= iq - ip - Z m(xii)
J=p+1
=a— 3 m@,) .
F=p+1

Hence k=a+1— X% um;,) #a+1+n —n, for any n, =,
since 7,€{0,1,2, ---, m(z,,) —1} and m,€{0,1,2, ---, m(x;) —1}.
This contradicts (f). So no element in A NA(B) can satisfy the
hypotheses of this case. The remaining cases are all based on the
demonstration of this first case and are left to the reader.

We now have A S B\\M(B). To show A = B\\M(B), simply
observe that, by construction, the eardinality of the set A is the
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same as that of the set X. Since the wandering set B\A(B) has
cardinality », we must have A = B\MB).

Lastly observe that, by construction, m(x) = card A, for each
element 2 in X,

REMARK 38.5. (1) The subspace [(B) constructed in the proof
of the theorem has the property that [*(B)SI¥(Z,.x X) but L;'I*(B)Z
IMZ, x X). Such a subspace is said to be lgft-justified. This is
equivalent of course to the property that BN ({0} X X) # @ but
BNn({—-1} x X) = O.

(2) Clearly a multiplicity function for a two-sided invariant
subspace can be identified with an ordered n-tuple of nonnegative
integers (a,, @, ---, &,_,) with the property that a, + a, + ---+
¢, =n. The number of distinet n-tuples with this property (and
hence the number of distinct left-justified two-sided invariant sub-

spaces [(B)) is (Z”n" 1> = @n — D1/(n — DInl, [8, p. 139]. In §4
we shall show how to use this finite collection of subspaces as
canonical models for all left-pure invariant subspaces for the

algebra 2..

The final theorem of this section illustrates how to obtain a
multiplicity function directly from a two-sided invariant subspace of
the form [*(B). Recall that the multiplicity function of such a sub-
space was defined using a decomposition of the projection onto the
wandering subspace.

THEOREM 3.6. Let I*(B) be a (nontrivial) two-sided invariant
subspace with associated ordered partition {H.}r._.(cf. 3.1.3). Then
the multiplicity function for the subspace I*(B) can be formed as
Jollows: for x in E;, m(x) = min, {n, + k — l|n, is the first positive
integer with the property that xct™(H,); ke Z}.

Proof. Recall that B = Uiz Z X E, and there is an integer
N such that B, = @, kt < N (cf. Remark 3.1). Note next that m
as defined above is a nonnegative-valued function since the partition
{E,} has the property that <(E,) S Ui B We will assume
throughout the proof that the element «x is in E,. Let 4 = B\\MB)
be the wandering set for the subspace and recall that we need
only show that m(x) is the cardinality of the set A,, the xz-section
of the set A.

We first show that the equation m(x) = 0 is equivalent to the
equation A, = @. Suppose that m(x) = 0. Then there exists an
integer % such that =», + %k =1 (so that in particular % <) and
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hence z is in z™*(%,). But then z ™z is an element of the set E,
so that the point (k, z=™=x) is in B. We now have \"(k, t~"x) =
(1, x) so that the point (I, ) is not in A,. Hence A, must be empty
since if A, is to be nonempty, it must contain at least the point
{1, x) (along with possibly other elements of the form (I + j, x) for
7> 0).

On the other hand if A, is empty then (I, ) is in B but not in
A. Thus (I, ) must be in AM(B) and hence A '(l, 2) = (I — 1, c7'x) is
in B. By left-invariance and the definition of the partition, (I — 2,
t7'z)¢ B. Thus n,_, =1 so that the smallest positive integer a such
that = is in z*(&,_,) is a =1. Thus Oe{n, + k — l|n, is the first
positive integer with the property that x € z"#(#,)} and hence m(x)=0.

Assume now that m(x) is different from zero. Let 7 be an
integer such that 0= 7 < m(x) and set n, =1+ 5. Suppose the
point (n,, ) does not belong to A,. This means that (n, %) = N(n,—
1, z7'z) with (n, — 1, z7'z) in B. Then z7'z lies in E, for some k=<
n, — 1. Hence m(x) =n, +k —1 =1+ (n, —1) — 1l = 7 < m(x). This
contradiction shows that (n,, x) lies in A and hence m(x) = card A,.

Finally the point (I + m(x), «) is in B. Let n, and k be the
integers as in the statement of the theorem so that z is in ¢™(F&),)
and m(x) =mn, + k—1. Then {4+ m(x), x) =, +Fk, x) =Nk,
z~"x) and the point (k, z=™x) is in B since 7 ™x is in K,. Thus
(I + m(x), ) is in B but not in A so that (I + m(z), z) is not in
A,. This completes the proof that m(x) = card A..

4, Canonical models. In this section we show how to use
the finite number of left-justified 2, VvV R, .-invariant subspaces of
the form [*(B) as canonical models for the pure %2;-invariant sub-
spaces.

THEOREM 4.1. Let _# be a mnontrivial left-pure invariant
subspace of (Z X X). Then there exists a two-sided inmvariant
subspace of the form V(B) and a partial isometry R, in the algebra
R such that P, = R,PpRf and hence 7 = R,*(B).

Proof. Let .# be the left-wandering subspace associated with
ANF = # O L; #). The dimension of & is less than or equal
to n. Let m(-) be the multiplicity function for 2. If 3.., m(x)=
n, then there exists a left-justified two-sided invariant subspace
I*(B) with multiplicity function m. The theorem now follows from
Theorem 3.4 in [5] and, in fact, R, is a unitary operator in this
case.

If S.cxm(x) <mn, then there exists an element x, in X such
that m(x,) = 0. Define a new function m, by
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m(x) T FE X,

ma(w) = n — Z},{m(w) T =, .
Then m, is a multiplicity function for a left-justified two-sided
invariant subspace [*(B). Let &, = I}(B)© L,;*(B), the wandering
subspace associated with I*(B), and let P = >, @ Pi(x) (cf. Remark
3.1). By construction rank P,(z) = m,(z). Now let @ = 3., DP.().
We may also decompose the projection onto the wandering subspace
for A :Ps = D,.xPD Px). It follows that the projection @ is
equivalent to the projection P- in I, since the corresponding
dimensions are identical (see [2] for a discussion of equivalence of
projections). Since @ < P-, it follows that P, < P in ;. So
by Theorem 3.4 of [5], there exists a partial isometry R, in R such

that P, = R,PpR¥ and this completes the proof.

As a corollary, we are able to show that any two-sided invariant
subspace that is not left-reducing is (left) pure and full. Lemma
4.2 will be useful for the proof. Let L® and H? denote the usual
Lebesgue and Hardy spaces on the circle with normalized Lebesgue
measure. Let H? denote the space of H?-functions vanishing at
the origin. Reecall that Szego’s theorem asserts that if w is a
positive integrable function on the circle, T, then the infg 1— fl'odm,
which is taken over all polynomials f vanishing at zerot is precisely
exp (S log codm) where the expression is zero by fiat if log @ is not
integrable. It follows from this faet that if f is an L*-function
then the distance in L? from f to the closed subspace (fH;) is

exp (S log {f]%lm) .

LEMMA 4.2. Let E be a measurable subset of the circle such
that both E and its complement T\E have positive measure. Then

the closure of 1;H® in L?, 1;H*, equals 1;L".

Proof. From Szego’s theorem we know that the distance from
the indieator function 1, to the space 1;H¢ is exp(Slog 1Edm>, which
equals zero since 1; vanishes on a set of positive measure. Thus
1,€1,H:. From this it is easy to see that the subspace 1,H® is
a reducing subspace for the operator of multiplication by 2z (i.e.,
the shift operator). Thus by [7] there exists a measurable subset
F such that 1,H® = 1,12 It is easy to show that the sets E and
F differ by at most a null set so that 1,H® = 1,L%
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COROLLARY 4.3. Let _# be a two-sided invariant subspace that
18 not left-reducing.. Then _# is (left) pure and full.

Proof. We shall assume first that _# is (left) pure and show
that _# is full. Subsequent to this we shall show how this assump-
tion can be replaced by the assumption that _# is not left-reducing.

Since _.# is a pure subspace we can apply Theorem 4.1 and
write .# = R,J*(B) where R, is a partial isometry in the algebra
R and I*(B) is a two-sided invariant subspace.

Let P be the final projection of R, so that P= R,R} is an
element of R. In this proof we shall use the notation L* to refer
to I(Z x X). Thus PL* = R, L’ = R, Y ,<o L:I}(B) = V< iR, (B)=
V.<o L3 #. QObserve also that P commutes with . To see this let
R, be an element of M. Then R, PL’=R, V<o L. # =V oo LiR, # <
Va.so Li#Z = PL?. So PL? is invariant for 2, and hence the projec-
tion P is in the commutant of IM,. To show P commutes with R,
observe that R,PR}L* = R;PL* < PL* so that R,PR; < P. But since
the von Neumann algebra R is finite and the projections R,PR} and
P are equivalent in R, we must have R,PRf = P. Thus P is in
R, the commutant of K. But RN’ =28 and so P lies in 2'(R), the
center of R (which is also 27(R), the center of {).

By Corollary 2.2 we can represent P as an operator of the
form 1; ® I acting on the Hilbert space L¥(T)® M,. If E is almost
all of the circle, we may take P to be the identity and it follows
that .# is full. If u#(T\E) > 0 so that the indicator function 1,
vanishes on a set of positive measure, we show that _#Z is not
pure, contrary to our assumption.

First note that P is also the initial projection of R, since R is
a finite von Neumann algebra and P is a central projection. It is
easy to see that we can choose an integer N >0 such that
LYW-(H* Q M,) < I*(B) where W is the isomorphism of §2. Thus
we have

PL} 2o #Z
= R, PI*(B) (P is the initial projection)
2 R,PLYW(H*® M,)
= R,LYPW'(H*Q M,)
= R LYW (WPW)(H*Q M,)
= RLYW' (1, ® I)(H* ® M,)
= RLyW-(1:H'® M,)
= R LYW (1 LXT)Q® M, (4.2)
= R,Ly W (1; ® D)(IXAT) ® M,)
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= R,LYPL*
= PR, LYL?
= PL* (P is the final projection).

But this contradicts the purity of It since PL? is a reducing sub-
space. This completes the proof under the assumption that _# is
a pure subspace.

Now assume that _# is a two-sided invariant subspace that is
not left-reducing. To complete the proof it suffices to show that
# 1is pure. We shall show that if _# is not pure then, in fact,
# must reduce 8,. We may break _# into its reducing and
pure pieces: # = _# P # where _#Z = NuxeLi#” and _# =
Sz L2F (5], Prop. 3.3; or [7]). If _# 1is not a pure subspace
then _# # {0}. The subspace _# is left-reducing; in addition, _#{
is right-reducing. To see this we need only show _# reduces R,.
Since _# reduces &, we have _# = R,L* where R, is a projection
in R, the commutant of & (Recall L* = *(Z x X).) But since _#
is invariant for R,, R,R,R}L* = R,R, L' < R,I*. Thus R,R,R} < R,
and so R;R,Rf = R, as in the first part of the proof. It follows
that R, commutes with R and so R,e2NR=8NELY = 2°(¥), the
center of 8. The projection R, may be represented as 1;® I acting
on L (T)R® M,. Since _#, the pure part of _#, is orthogonal to
A, W_s# must lie in the range of 1,,®I (E' = T\E). Hence
W_#, < L}(E'Y® M,. Representing W_#; as a matrix of subspaces,
W_#, = | #;;], we have _#;; & L*E') for each 1, j.

Since _#; is invariant under L,, it is easy to see that each sub-
space _#;; is invariant under multiplication by X,, the bilateral shift
on L*T). Using the fact that _#; is pure, a calculation shows that
the subspaces _#;; do not reduce the shift, unless _#;; = {0}. Hence
for each 14, j, either _7; = ¢ ,H(T)(|@,;] =1 a.e.) or _#;= {0}
But since _#;; & L*(E’'), we conclude that _#;; = {0} for all 7, j.
Hence _# = {0} and so _# is a (left) reducing subspace.

REMARK 4.4. The preceding proof shows that a two-sided in-
variant subspace is either reducing or pure. Thus in the decom-
position . #Z = _#Z @ _# as above, at most one of the spaces .7,
_/#; is a nonzero subspace.

5. Uniqueness. In this last section, we comment on the degree
of nonuniqueness in the construction of canonical models. Theorem
4.1 not only states that if _#Z is a left-pure invariant subspace then
A = RJ¥B), but its proof and the proof of Theorem 3.4 actually
construct the two-sided invariant subspace [*(B). Since .#Z also
equals R,R;*I*(o*(B)) = R,I*C), the subspace [*(B) is not unique.
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However we can choose a specific subspace as follows.

For any multiplicity function such that >, m(x) = n, construct
the left-justified two-sided invariant subspace [*(B) as in the proof
of 3.4. In case >, m(x) < n, extend the function to another multi-
plicity function m, by defining m(x,) = n — X.,.,, m(x), where x, is
the element of X outside the support of m with the smallest index
k. Now construct the subspace [*(B) for this multiplicity function
as in 3.4. Using this procedure, any given multiplicity funection
will yield a unique left-justified two-sided invariant subspace of the
form I*(B). It remains only to consider the partial isometry in the
expression .« = R,J*(B). The following proposition is a reformula-
tion of a corollary found in [3, p. 64].

PROPOSITION 5.1. Let U be a bilateral shift on a Hilbert space
52, let 7% be a full, pure invariant subspace for U, and let #
be a pure imvariant subspace for U. If V., and V, are partial
isometries on S which commute with U and satisfy VP Vi =
P ,, then there is a partial itsometry W onm SZ such that: (1) the
initial space of W is the initial space of V,; (2) the final space of
W 4is the itnitial space of V,; B) W commutes with U; (4) W s
reduced by 2#5; and 5) V,= V., W.

Proof. Let & =200 and = _#Z O U_#. Then
ViPeVE# =V (Ps,—UPs UNV*=V,P, V¥*~UV,P,V}U*=P_,—
UP_,U* = P,.. Thus when restricted to &, each V, is a partial iso-
metry mapping onto &. For 7 =1, 2, let &, be the initial space of
V. #;. Then &, is a subspace of % and V, maps &, isometrically
onto &. Because V, commutes with U and &, is contained in the
complete wandering subspace &, it is easy to check that the initial
space of V, is X2 . U"¥,. Since V,.&,= %, we can find a
partial isometry W, mapping &% to % such that the initial space
of W, is .#,, the final space of W, is .&,, and (V.| Z,) W,=(V,|.%;).
Define W on all of 2 = D2 _.. U by the following formula

WRLUre,) = 3, U"We,

where {e,)7-_.. is a sequence in & satisfying > l|le,||” < o. (For
details on this definition see the proof of Theorem 3.4 in [5]. It is
helpful to note that if the spaces U"5 are identified and operators
on S¥ are written as operator matrices, W is diag(---, W, W,
W, -++).) It is immediate that W satisfies the conclusions of the
proposition.

Our uniqueness theorem is a simple translation of Proposition
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5.1. We include a precise statement for completeness.

COROLLARY 5.2. Let . # be a left-pure invariant subspace and
let I'(B) be a two-sided invariant subspace. If R, and R, are
partial isometries in R which satisfy R, PpxRi = P,, then there
s a partial isometry R, in R whose initial space is the imitial
space of R,, whose final space is the initial space of R,, which is
reduced by 1(B), and which satisfies R,, = R, R,.

Proof. Let W be the partial isometry obtained from Proposition
5.1 for the bilateral shift L,, We need only show that W is in R.
But since the initial space of R, is the final space of W, we have
R!R, = R:R,W = W and hence W is in %.

The preceding corollary does not answer completely all questions
of uniqueness. In particular, it does not describe the partial isome-
tries in R that are reduced by a canonical model. A satisfactory
desecription can be given in case the subspace of Corollary 5.2 is
both full and pure. In this case # = R,*B) where R, is a unitary
operator in . The task is to describe those unitary operators in
R that are reduced by a particular canonical model. Expressing
R, in its matricial form as discussed in §2, we can show that R,
has a specific form, which depends on the canonical model reducing
it. The following two examples illustrate this.

ExampLE 5.3. Consider the subspace I*(Z, X X) and let P be
the projection onto the subspace. It is easy to show that RN{P} =
Ry NRE = M. The image of M, in Lo(T) R M, is the algebra of
(right multiplications by) diagonal matrices with constant entries
along the diagonal. Thus the unitary operators in R that reduce
(Z. X X) can be represented as right multiplications on LXT)RXM,
by matrices of the form

a, 0

0 a,

with |e,] = 1.

ExamMPLE 5.4. A more typical example can be obtained by con-
sidering the case that X has cardinality 3. Let B = {(0, z,), (1, «,),
A, 2} U (Zs X X) and consider the subspace I*(B). The image of
this (two-sided invariant) subspace in L*(T)&® M, (under the isomor-
phism discussed in §2) is
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H Hf H?
H® H* H}
H* H* H}
(Recall Hf = X, H* and H? = X,H*.) A computation shows that if R,

is a unitary operator in R reduced by [*(B), then R, must be right
multiplication by a matrix of the form

Ay Ao N

(429 2 o5k,

W)l Qag)y s
with the constants a,; chosen so that the matrix is unitary (recall
L(z) = 25).

This second example exhibits the general characteristics of the
form of a unitary operator reduced by a canonical model. In general
if we represent R, as right multiplication by the matrix [¢,;] on
LXT)® M,, one can show that each ¢,; has the form ¢;;X, where
¢;; is a complex constant and %k is —1, 0, or 1. In particular ¢, can
be shown always to be a constant; if ¢ > j, ¢,;, = ¢;;X, and k=0 or
1; and if ¢ < j then @,; = ¢;;X, and k = 0 or —1. Moreover one can
construct a simple algorithm, based on the form of the canonical
model for deciding the value of k. Although we feel that these
results are of value, their statements and proofs are notationally
cumbersome and so are omitted.
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