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In this note those compact subsets of the plane that are
the spectra of irreducible subnormal operators are character-

ized.

In December 1977 John B. Conway presented a colloquium talk
at Virginia Tech and asked, “Which compact subsets of the plane
are the spectra of irreducible subnormal operators?” If the adjective
irreducible is replaced by pure in this question, then Clancey and
Putnam [2] have the following answer: A compact set K is the
spectrum of a pure subnormal operator if and only if for every
open disc 4 that has a nonempty intersection with K, we have
R(KN4) = C(KnNd47). Similarly, our answer to Conway’s question
will be a function algebraic characterization. For the basic facts
concerning this area we refer to [3] or [10].

If 57 is a separable Hilbert space the algebra of continuous
operators on 57 will be denoted <#(5#°). An operator T € & (%)
is irreducible if 2#° has no nonzero subspace that is invariant under
T and its adjoint T*. For the basic facts concerning subnormal
operators we refer to [4]. If T e < (5#) then o(T) will denote the
spectrum of T.

If K is a compact subset of the plane, “Z(K) will denote the
collection of rational functions with poles off K; the uniform closure
of Z(K) in C(K), the algebra of continuous functions on K, is denoted
R(K). If @ belongs to the maximal ideal space of R(K), then there
exists a point z€ K such that o(f) = f(z) for all fe R(K). Hence
the Gleason parts of R(K) form a partition of K.

If TeZ(&5#) and K is a compact set containing o(T), then K
is .called a spectral set for T if

(1) HAD = 11 fllx

for all fe <#(K). (Here ||f||lx denotes the sup norm of f on K).
If K is a spectral set for T, it is easy to define f(T)(e <Z(5#)) for
all feR(K). A Dbasic fact about a subnormal operator S is that
o(S) is a spectral set and equality holds in (i) with K = ¢(S) for all
fe R(a(S)).

THEOREM 1. A compact set K is the spectrum of an irreducible
operator T whose spectrum is a spectral set if and only if R(K)
has one nontrivial Gleason part G and G- = K.
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REMARK. In the sufficiency part of the proof the operator we
construct is subnormal. Hence, the theorem answers the question
of Conway. For the necessity part of the proof we need two (non-
trivial) results and an elementary fact.

Fact. Suppose K, is a spectral set for T,e.<#(5#) and K =
(UK;)" is compact. Then K is a spectral set for 7 = PT..
We leave the proof to the reader.

THEOREM 2. (Mlak, Lautzenheiser, Seever). Let K be a spectral
set for Te B () and let G,, G,, --+ be the nontrivial Gleason parts
of R(K). Then T = NH@D,;T,), where N is a normal operator with
spectrum contained in the boundary of K and G; is a spectral set
for T,. The proof of this and related results can be found in [5,
7, 8, 9].

The following theorem (combined with the fact and Theorem 2)
guarantees that if K is a spectral set for T with at least two non-
trivial Gleason parts G, G, for R(K) such that o(T)NG,#* @
1 =1,2, then T has a nontrivial reducing subspace.

THEOREM 3. (Melnikov). Let G, be a montrivial Gleason part
for R(K). If acG{\G, then a is a peak point. In particular, if
G, 1s another Gleason part them G, N Gy = @.

The proof of this result can be found in [6].

Proof of Theorem 1. The only thing left to establish is if K
is a compact set with one nontrivial Gleason part G and G- = K,
then K is the spectrum of an irreducible subnormal operator. Choose
a sequence {z,} of points belonging to G such that {z,}]- = K. Let
d, denote point mass measure at z,. Fix z,€G.

For each 2z, choose a representing measure ), for R(K) at z,
such that o, is absolutely continuous with respect to ), (such a
measure can be found by [10, p. 165]). Then

A

A= on

2o
is a representing measure for R(K) at z, such that the support of
N is K. Let 2 = R*(\), the L*(\) closure of R(K), and let S be
multiplication by z. Clearly ¢(S) = K so we need to show S is

irreducible.
Observe first that if fe R(K) then
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| fa)] = || s,
= KA DI

(Here ¢, > denotes the inner product in R*\).) It is now routine
to show that

(ii) <h1h2; 1> = <hu 1><h21 1

for all h,;e R*(\) N L™(\) for ¢ =1, 2.

Using the techniques of [12], one can show that the commutant
of S is the set {My: + € R*(A) N L*(\)}, where My, denotes multiplica-
tion by +. Hence, if P is a projection commuting with S, then
P = M;, where f is the characteristic function of a Borel set F.
By (ii) we see that {f, 1) equals zero or one. We assume that
{f,1> =1 (otherwise we work with the projection 1 — P = M, ;).
Hence

=S 1D
-fa
= \F) .

Since A\ is a probability measure, f= 1 almost everywhere; hence
P=1.

Unfortunately there are no known topological ecriteria that
characterize the sets which are nontrivial Gleason parts of R(K).
(Many necessary topological and measure theoretic facts are known:
(1) G is connected. (2) G is o-compact. (3) G has (area) density one
at each of its points. (4) G is area connected (consult [6]), ete.)
However, the literature contains many interesting examples
discussing various properties of these parts. Combining these ex-
amples with Theorem 1, one comes up with interesting operator
theoretic consequences.

Fix an operator T whose spectrum is a spectral set. If o(T)
has two ecomponents of its interior, say U, and U, such that ¢(T) =
(U, UU,)" one may ask if T =T, T, with o(T,)cU; for 2 =1, 2.
However, since there exists a disconnected nontrivial part [10,
Examples 26.24 and 26.25] the answer, in general, is no. (The first
person to observe this phenomenon was Lautzenheiser in his thesis
{5]. In this interesting work he also discusses how Theorem 2 sub-
sumes many other known results.) One may also wonder if it is
possible to write T'= T, T, with o(T) C(into(T))~ and (T, C
(o(T©\int o(T)). Again the answer is no. Let D= {z:]|z| <1},
D, ={z2eD:Rez >0}and D_ = {ze D: Rez < 0}. Construct a compact
set F from the closed unit disc D~ by removing pairwise disjoint
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open dises D, from D, 'such that int (D,\UD;,)= @ and 37, < =
(r, is the radius of D,). Using Theorem 2 in [11] and Theorem 3 in
[1], we can construct F' such that zero is not a peak point of R(F).
Let K = G~ where G is the nontrivial part of R(F') containing zero.
(Note: GND.+* @ and GD D_.)
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