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JOHN A. FRIDY AND ROBERT E. POWELL

Several classes of summability matrices are determined
by the coefficients of Maclaurin series of the products of cer-
tain analytic functions. These matrices include generalizations
of the transforms of Lototsky, Taylor, and others. It is proved
that under rather weak restrictions on the analytic functions,
X.—Xr1=0(k™Y) is a Tauberian condition for the resulting
matrix transformations.

1. Introduction. Several classes of summability transforms
are generated by products of analytic functions. The matrix (a,,;)
of such a transform is given by

(1) HA® = 3 a0t

where f,(2) is analyticat 2z =0 (k =0, 1,2, ---). This class of trans-
forms includes, for example, the well-known Euler-Knopp means [6,
pp. 56-60] and the Taylor transforms [6, pp. 60-64]. In addition
to these two special cases, the transforms of this class for which
we shall prove Tauberian theorems are the following: the Karamata
transform [8, 9], the generalized Lototsky transform [4], and the
7 (r,) transform [7]. We also give a Tauberian theorem for the
T(r,) transform [5] which, although not a member of this class, is
very similar to the others.

In this paper we shall state the Tauberian theorems in sequence-
to-sequence form; thus, a typical Tauberian condition for a sequence
z is (4x), = o(k™Y), where 4dx is given by (4x), = x, — %,+,. Our
proofs will use recently developed techniques [1, 2] that are based
on the concept of a “block-dominated” matrix. For each #, let
(@i uy be a block of consecutive terms of wth row of the
matrix A; then A is dominated by the sequence of blocks {a,,,}i™ i
(mn=0,1, --.) provided that

v(n)

Z a’n,k

k=1Fp(n)

(2)  lim inf{

€z

S lawsl = 3 1awl} >0,

kEsu(n >v(n

Then L, = yv(n) — p(n) is called the length of the block in the wnth
row. The results from [1, 2] that we shall use are stated here for
convenience.

THEOREM A. Let A be a regular matrixz that is dominated by
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(@i}t s vy 2f ® 18 a bounded sequence that is A-summable and

(3) max |(4x),| = o(Lz") ,

#(n) <k<y(n)

then x 1is convergent.

THEOREM B. Let A be a regular matrixc that is dominated by
(@0 s vy and @, = 0 whenever k > v(n); if ¢ is A-summable and
(3) holds, then x is convergent.

LEMMA C. If x is a sequence such that (4dx), = o(k™") and the
index sequences tt and v are chosen so that

(4) y(n) = O(i(n)) and lim p(n) = « ,
then (8) is satisfied.

Thus, for a given matrix A, our method will be to show that
the sequences g and v can be chosen so that (2) and (4) are satisfied;
from this we can then conclude that (4x), = o(L;') is a Tauberian
condition for A.

2. Principle lemmas. Since we shall be considering regular
matrices, our general task will be to show that the index sequences
¢t and v can be chosen so that for each =,

(5) Sl < p < 1/4
and
(6) PIRLEVESTY

These inequalities, coupled with the Silverman-Toeplitz conditions
for regularity, guarantee that A is dominated by {a, }i™inwm (0 =
0,1,2, ---). In order to establish (4), our method will be to show
that # and » can be chosen so that each is given (approximately)
by a linear expression in m. This is stated precisely using the
greatest integer function in the following two lemmas.

LEMMA 1. Suppose A is a matrix given by (1), where each f,
18 analytic on {z:|2| = R, R > 1} and there is a number M such
that for every k,

sup [ fi(e)| = M ;

if o <1/4, then there exist numbers a and b such that v(n) =
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[an + b] + 1 and (6) holds.

Proof. Let I' = {z:|2| = R} and g¢,*) = [1i- fui(?). Then we
have

L[ oy
27q Jr !

;%%}lan,kl = :E:

k>v
s 1

T RFH

<1 sup|g.@)] @2nR)
tel k=

T
< Lyl 1 o0p
ar 1 1
R

1 1
_M'n+1 .
R—-1FR

For a given p < 1/4, 3., |a,:| = o will hold provided
1 M

=0,
R_1 r -F
which is equivalent to
x M
o —1)

or

v>(’n+1)lnM— In (o(R — 1))
= InR )

Hence, @ and b can be chosen so that y»(n) = [an + b] + 1 and- (6)
holds.

LEMMA 2. Suppose A is a matrix given by (1), where each f,
is analytic on {z:|z] < R < 1} and there is a number M < 1 such
that for every k,

sup | fiR)| = M ;

if 0 < 1/4, then there exist numbers a and b such that a >0, p(n) =
[an + b], and (5) holds.

Proof. LetI' ={z:|2| = R <1} and g¢,(?) = [It, fi(2). Then we
have

ké'““”" = >,

ksp

L[ oty
)
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1 e 1
< = —_
= - sup 9.1 2 Rk+1(2”R>
1 1 R/l‘“ -1
< T M I ST (9zR)
or B 1
R
<1yl
=1-R Re+t

For p < 1/4, >i<x @] = 0 will hold provided

1 Mn+1 1 é[oy

1—-R R+
which is equivalent to
Mn+1
Rtz
~ o1 — R)R

that is,

< (m+1D)InM— In[o(1 — R)R] )

# InR

Hence, a and b can be chosen so that p(n) = [an + b], @ >0, and
(5) holds.

3. Applications. The first Tauberian theorem that we shall
prove concerns the .7 (r,) transform [7]. This generalization of the
Taylor transform is defined by

where a,, = 0 for k¥ < n and {r,} is a sequence.

THEOREM 3. Suppose that 0 <7r,<p3<1 for n=0,1,2, ---,
and x is a bounded sequence that is 7 (r,)-summable and satisfies
(4x), = o(k™"); then x 18 convergent.

Proof. Since 0 <7, < 8< 1 we have that .9 (r,) is a regular
matrix [7, Theorem 3.6]. Choose p(n)=n. Since. f,(z) =
(1 — r)/Q — r2), each f, is analytic on {z:]2] <2/(1 + g)}, and
2/1 + B >1. For R = 2/(1 + B) we have :

— R~ 1—B<126> 1+8

sup | fil)| = 1
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Thus, the result follows by Lemma 1, Lemma C, and Theorem A.

The Taylor transform T(r) is a special case of the . (r,) trans-
form, where r,=r n=0,1,2, ---).

COROLLARY 4. If0<7r<1and x is a bounded sequence that
18 T(r)-summable and satisfies (4dx), = o(k™), then x is convergent.

Proof. Choose 8 = r in Theorem 3.

This corollary is an extension of the result contained in [1,
Theorem 9].

The Karamata transform K]la, b] [8, 9] is generated by (1)
using

f) =fy=0td—a=b0z 4, o995 ..
1—0bz2

Then Kla, b] is regular [8, Theorem 3] provided —1 < —b<a < 1.
Each f, is analytic on {z:]|2z| < 1/|b|} and

la| +[1—a—bllz].

S0
la| +11 —a—b|R
16| B — 1]
THEOREM 5. If —1< —b<a<1, and 2 s a bounded sequence

that is Kla, b]-summable and satisfies (4x), = o(k™'), then x is con-
vergent.

sup | filz)| =

Proof. Suppose b = 0. Thus
sup | fi@)| = laf + 1 —a|R.

To apply Lemma 1, choose R =2 and M = |a| + 2|1 — a|. To apply
Lemma 2, choose R = (1 — |a|)/2|]1 — a|. Thus R <1 and

1—Ja| _ 1+ ]al

2|1 — al 2
Suppose b = 0. To apply Lemma 1 choose R = (|b| + 1)/2|b|.

Then 1 < R < 1/|b| and f, is analytic on {z: |2| < R}. Moreover,

o] +1
2|b|

sup | fi(2)| = la| + [1 — a <1.

la] + 11— a — b

sup | filz)| =

p1 o+ 1]
|b] 210]
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Now choose M (of Lemma 1) to be the right-hand member of the
preceding inequality. To apply Lemma 2, choose

1—|a
R = .
2(|1—a— b+ (b))

Then R < 1 and f, is analytic on {2:|z| < R}. Moreover, in this
case,

1 |al

211 —a—b| + [b

o gl
20T— a— b] + b)

la] + |1 —a —b]

sup | £,(2)| = <t

Therefore the result follows by Lemma 1, Lemma 2, Lemma C, and
Theorem A.

The generalized Lototsky transform [Z, d,] [4] is generated by
(1) using fy(z) =1 and

z + d,
P=2T%  p-12 ...
Ju(?) 144,
Then [L, d,] is a lower triangular matrix and, for A, = (1 + d,)*
where 0 < a@ < h, =<1, the transform is regular [4, Theorems 3.1
and 3.2]. Also, the generating functions become f,(z) =1 — h, + k2
for k= 1.

THEOREM 6. If 0<a=(1+d,) =1, and the sequence x 1is
[L, d,}-summable and satisfies (dx), = o(k™"), then x is convergent.

Proof. Let v(n) = n, and note that each f, is an entire function.
Choose R = «/2 < 1. Substituting h, = (1 + d,)~", we have

| fi®)] = |1 — hy + b2 = |1 — hy| + [Be]lz] .

Hence,
sup | /i@ S 1—a+ME<L.
The result now follows from Lemma 2, Lemma C, and Theorem B.

In the special case where h, = r, the [L, d,]-transform becomes
the Euler-Knopp transform FE(r). Thus, the result in Theorem 6
holds for E(r) when 0 < » < 1. This is a weaker result, however,
than the Hardy-Littlewood result [3] for E(r) which uses the
Tauberian condition (4x), = O(k~V%).
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The T(r,)-transform [5] is defined by a,, = 0 for k¥ < n and
[f'n(z)]” = IZ.:; an,n+kzk ’

where f,(z) = A — »,)/(L — r,2). This form is slightly different than
(1), but with minor modifications in Lemmas 1 and 2, the following
Tauberian theorem can be proved for the T(r,)-transform.

THEOREM 7. If 07, =R3<1, and = is a bounded sequence
that is T(r,)-summable and satisfies (4x), = o(k™™), then x is com-
vergent.
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