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FRANK FORELLI

We correct an oversight in the paper of the same title by
pointing out that a theorem holds which is stronger than the
theorem of that paper.

1* Let X be a complex manifold* (We agree that X is con-
nected.) It will be convenient to denote by H(X) the class of all
holomorphic functions on X. Let p eX, and let:

N(X, p) - {f:feH(X), Re/ > 0, f(p) - 1}

W(X, p) = {g:geH(X), \g\ < 1, g(p) = 0}

W(X) = {g:geH(X), \g\ ̂  1} .

Thus

N(X, p) = {(1 + </)/(l -g):ge W(X, p)} .

Let g 6 W(X). We will say that g is irreducible [1] if when-
ever g — <pγ where φ, ψ e W(X), then either φ or ψ is a constant
of modulus one. The purpose of this brief note is to correct an
oversight in [2] by pointing out that the following theorem (which
is stronger than the theorem of [2]) holds.

THEOREM. Let g e W(X, p) and let f - (1 + g)/(l ~ g). If

N(X, p) Φ {1}, and if f is an extreme point of N(X, p), then g is
irreducible.

Proof. Our proof is based on the following three identities.

(1 l) 1 — zw = 1_ 1 + z , 1_ 1 + w
(1 - z)(l - w) 2 1 - 2 2 1 - w *

α 2 ) 1 + z w = i Γ α - g)d -w) I J , 1 Γ ( i + g)(i + w) _ Ί

1 - 2W 2L 1 - zw J 2 L 1 - ^ ; ^ J

And

3) 1 + [w(z + w)/(l + zw)] = J^ ί ]L _ ^ 1 - w , _!_/•]_ + ^ 1 + w
l-[w(z+w)/(l + zw)] 2 1 + w 2 1 - w

The identity (1.1) proves that
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Re 1 ~ z w > 0
(1 - 2)(1 - W)

if \z\ < 1, I it? I < 1. This in turn proves that

Re tt ~ ^ ~ w ) > Q
1 — zw

if \z\ < 1, \w\ < 1. Thus if Res = 0, then

(1.4) Re Γ (1 ~ *)( ! ~ to) + J ;> 0

L 1 — »tι; J

if \z\ < 1, Iw| ^ 1.
Let # = 9 ^ where <£> e W(X, p), ψ e TF(X). It is to be proved

that f is a constant of modulus one. If t eT, then by the identity
(1.2),

/. _ 1 Γ (1 — tφ)(l — ίτ/r) , Ί i 1 Γ (1 + ^ ) ( 1 + ^ )
JΓ — ' " • ~y" S "τ~ ' S

2 L 1 — φψ J 2 L 1 — φψ

We have

(1.5) a(p) — 1 — t^(p) + s .

Let t in Γ satisfy Re [tψ(p)] = 0 and let s = ίψ»(3?). Then by (1.4)
and (1.5) we have α, βeN(X, p). Thus a = β. This gives

(1.6) σ=tψ= *—M- = 8 ~ τ .
1 + sί<£> 1 + sτ

Thus

( Π 1 fz= 1 + τσ = 1 + [τ(s - τ)/(l + sτ)]
K ' J J 1-τσ 1 - [r(8 - r)/(l + βr)] '

We have s = ir , - 1 ^ 7 ^ 1. By (1.7) and the identity (1.3),

/ (1 ^ ) f ^ + I d + T O f ^(1.8) 5 ( 1 ^ ) f ^ + I d + T O f ^2 1 + iτ 2 1 — ^τ

If - 1 < 7 < 1, then by (1.8), iτ = - i τ , hence r = 0. Thus / = 1
which contradicts the fact that 1 is not an extreme point of N(X, p)
if N(X, p) Φ {1}. Thus 7 = ± 1 , hence by (1.6), tf = s which proves
that g is irreducible.

2. Let X = D. If g e W(D, 0), then by the lemma of Schwarz,
g(z) = 2^(2) where ψ» e TΓ(Z>). Thus by the foregoing we have a
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quite elementary proof of the fact that if / is an extreme point
of N(D, 0), then

where teT. There is a different elementary proof of this in [3].

3. The identity (1.1) states that if

(3.1) f(z, w) = (l- z)(l - w)/(l - zw) ,

then 1// is not an extreme point of N{D x D, 0). We will prove
that / on the other hand is extreme. Thus if

(3.2) g = (f-l)Kf+l),

then the Cayley transform of g is extreme, whereas the Cayley
transform of — g is not.

3.1. If A is a convex set, then we will denote by dA the class
of all extreme points of A. If B is a compact Hausdorff space,
then we will denote by M+{B) the class of all Radon measures on
B. Thus if μeM+(B) and EczB, then μ(E) ^ 0.

Let feN(D x />, 0). Then Re/ is the Poisson integral μ% of a
measure μ in M+(T x T). It will be convenient to denote this
measure by /* . Thus

Re / = (/*)*.

Let F be a closed subset of the torus T x T. We will denote by
NF the class of those / in N(D x />, 0) for which spt (/*) c F.

PROPOSITION. 3NF C 3N(D x />, 0).

Proo/. Let fedNF. It is to be proved that fedN(D x />, 0).
Thus let / = 1/20 + 1/2/*, where g, h e N(D x D, 0). Then g* + ft* =
2/*, hence #* ̂  2/*. This proves that geNF. Likewise heNF.
Thus f = g = h.

3.2. Henceforth we let

F = {(ί, t): teT},

and we define π: T -> F by π(ί) = (ί, t). Let / e NF and let μ = / * .
Then JM = π^λ where λeikΓ+ίϊ7). We have

£ fc) = ί^w*d^(ί5, w) = Jpίfcdλ(ί) = λ(i - fc) .
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Thus X(j - k) = 0 if jk < 0, hence \(n) = 0 if n Φ 0, ± 1 . This
proves that

(3.3) dλ = ^ + 1 + γ e j —

where aeC. We have

ΪU-" + 1 + —e" ^ 0 ,
2 2

hence 1 — | a | ^ 0. Thus we see that NF may be identified with

D = {α: α e C, | a \ ̂  1}

and that 3iVF may be identified with

T = dD = {a:aeC, \a\ = 1} .

3.3. Let (3.1) hold. We have

f(z, w) = l + 2(Σ *kwh - — Σ ^fe+1/^fc ~ — Σ zkwk

\ i 2 o 2 o

hence /* = π*X if in (3.3) we let a = — 1. This proves that f edNF,
hence by Proposition 3.1, fedN(D x Z>, 0). Furthermore, we see
that

= {(1 - αz)(l - άw)/(l - «w): a e T) .

3.4. A comment on the foregoing. Let (3.1) and (3.2) hold, let
t e Γ, and let

h = (1 + tg)/(l - ίflr) .

Let t Φ - 1 , let s = (t - l)/2, and let

<p(z) = «(« +

Then

f(φ(z), w) =

where α + ίb = f(φ(0), 0). By Proposition 3.3 of [2], this proves
that hedN(D x Z>, 0).

4* A concluding comment* Let G be a region in D. It will
be convenient to say that D — G is a Painleve null set if every
bounded holomorphic function on G has a holomorphic extension to
D. By way of a corollary to Theorem 1, we have the following
converse of the lemma of Schwarz.
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THEOREM. Let W(X) [separate the points of X, and let φ in
W(X, p) satisfy

W(X,p) = φW(X) .

Then the complex manifold X may be identified with the open unit
disc D modulo a Painleve null set.

Proof. If g e W(X, p), then g = φψ where ψ e W(X). Thus by
Theorem 1,

dN(X, p ) c {(1 + tφ)/(l - t φ ) : t e T ) .

This proves, by the Krein-Milman theorem, that if f e N(X, p), then

(4.D

where μeM+(T). This in turn proves, since W(X) separates the
points of X, that φ is univalent. Thus we may identify X with
φ(X), in which case (4.1) becomes

(4.2) /(*) - (l±l£dμ(t)
J 1 — tz

ifzeX. The right side of (4.2), however, belongs to N(D, 0). Thus
D—X is a Painleve null set, which completes the proof of Theorem 4.
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