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One of the main potential applications of Hammerstein
operators is a functional analytic study of nonlinear differ-
ential equations. In fact, some connections have already
been established with equations of the form 2%({)=¢[x(t)] or
2(t)=¢[xz(t), t]. Other applications have been made to
generalized random processes and the theory of fading
memory in continuum mechanics. The main purpose of the
present paper is to establish and study the representation
of Hammerstein operators on continuous functions. A
‘“nonlinear’’ integral is introduced for this purpose. Con-
vergence theorems for a.e. and convergence .in measure
are established and contrasted. The last result of the
paper relates uniform integrability, a key concept in the
study of martingales, to essential ranges, an important
concept used to establish the differentiability of some set
functions.

1. Introduction. One of the main potential applications of
Hammerstein operators, as stated in [12], is a functional analytic
study of nonlinear differential equations. In fact the properties
of the function ¢ required to insure the existence of solutions to
the differential equations

&) = gla(®)] or &) = la(?), t]

are closely related to the properties of the kernel ¢ used to repre-
sent an abstract Hammerstein operator T as in [12]. The repre-
sentation there is given by the formula

7() = {ol.7(t), tlague.

Other applications have already been initiated, we mention two of
these; applications to the theory of generalized random processes in
[9] and to the theory of fading memory in continuum mechanics
in [5].

The above considerations motivated other work on the repre-
sentation of Hammerstein operators over different function spaces.
The reader is referred to [1], [2] and [3] for the cases where the
function space is L', M (<#) or C(K, X). The representation obtained
in [1], [2] and [3] is of the form
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7(7) = | fam

where the integral is (necessarily) nonlinear. Here m denotes a
finitely additive set function defined on an appropriate ring with
values in M(X, C) which is a certain space of maps (not necessarily
linear) from X (a Banach space) into C (the scalar field). The
integral is of course suitably defined. These representations should
be contrasted with the representation obtained in [12] where a
kernel function is present and where the integral is the standard
one. The nonlinearity imposed on the operator 7 in all of the
above works is:

I(f +H+ ) =T+ )+ T + ) — T

whenever f, and f, have disjoint supports. This condition has been
called the Hammerstein property by J. Batt in [3] and the additive
property by N. A. Friedman and A. E. Tong in [8].

The main purpose of the present paper is to study the proper-
ties of the nonlinear integral as defined in [1], [2] and [3]. The
main interest here focuses on Hammerstein operators that are
scalar valued and defined over C(K, X), the space of continuous
functions over the compact space K under the supremum norm and
with values in the Banach space X. Thus in our study of the

properties of g fdm, f will be defined over K with values in X and

m will be a finitely additive set function with values in M(X, C)
and will satisfy certain continuity conditions. Actually most of
our results can immediately be generalized to abstract Nemytskii
measures (see [2]) since continuity of the functions will not be used
in most of the proofs. It should be recalled that if T is a

Hammerstein operator on C(K, X), then T(f) = S fdm; where m,

has values in M(X, C) and moreover m, is a measure extendable to
7, the Borel field of K (see [3]). Two types of convergence will
be studied here. The first convergence will be s, — f m a.e. where
{s.} is a sequence of simple X-valued functions. The key property

in this type of convergence will be the requirement that S s, dm be

uniformly countably additive measures. An important (’)cechnical
device introduced will be a version of the Egoroff Theorem. The
last theorem obtained for m a.e. convergence states that if T is a
scalar valued Hammerstein operator on C(K, X) that has a G-repre-
sentation (see R. K. Goodrich [10]) with respect to m’, then m’(:)x
is necessarily uniformly countably additive for ||z|] < a provided
the bounded or the dominated convergence theorem holds for m'.
The second type of convergence to be studied is convergence in
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measure. It is appropriate here to recall that W. V. Smith and
D. H. Tucker {15] and also D. H. Tucker and S. G. Wayment [16]
have constructed examples of X-valued functions converging in
measure but having no subsequence converging m a.e. (and even
an example of a sequence that converges to different functions in
measure and m a.e.!) For convergence in measure we use the
concept of essential range introduced by M. A. Rieffel [13] to obtain
the Radon-Nikodym Theorem for Bochner integrals. Another central
concept is uniform integrability. Uniform integrability is known
to play a key role for martingale convergence theorems, for example
see [4]. The last theorem obtained in the present paper states that

if f, are essential range functions and S f.dm converges to 0 uni-
A

formly for Ae.<# then the f, converge to 0 in measure provided
the essential ranges of f, are bounded away from 0 over appropriate
sets and provided they transfer uniform integrability. Of course
it is easy to give an example where S f.dm converges to 0 but f,
A
does not converge to 0 in measure, even if m is linear. For
example let m(A)(x, y) = (W(A)x, 0) where (x, y) e R* and where X\ is
the Lebesgue measure and let f,(¢) = (0, »). Then S f.dm =0 yet
A
f. does not converge to 0 in measure. (See W. V. Smith [14], for
example.)

We now present a summary of the results obtained. All of
these results pertain to measures representing Hammerstein opera-
tors 7. To stress this we will use the notation m, in the section
on results. The first result states that if {s,} is a sequence of X-
valued simple functions converging m a.e. to f and if the measures
S s, dm are uniformly countably additive, then there exists a unique

(+)
scalar measure » such that »(&) = lim \ s,dm, moreover the limit

E
is uniform for EFe.<#. This allows us to define the space L'(m) as
the space of functions from K into X that are limits m a.e. of a

sequence of simple functions s, with S s,dm uniformly countably

additive. We then show that {s,} magf) be replaced by {f,} where
f.€L'(m). The second result is an Egoroff type theorem. The
norm used is of the type sup,..s.|8.(-)x — f(-)x| where s, and s are
scalar valued and 2 is in X. As a corollary to this result we show
that if in addition {S s,()xzdm; is uniformly countably additive
(+)
(in % and for [|z|| £ a), then there exists a scalar measure », such
that sup, <, |7.(E) —S sn(-)xdm{ converges to 0 uniformly for
E

E e 7. The third result shows a version of the bounded convergence
theorem for the nonlinear integral. This result is followed by a
version of the dominated convergence theorem. Our next result
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relates to G-representation as defined by R. K. Goodrich, see [10].
For our second type of convergence we use the a-semi-variation
function to define convergence in measure. We already have discus-
sed the examples obtained in [15] and [16] to point out the rather
striking differences between the two modes of convergence. We
define the function f to be m-integrable if there exists a sequence
{s,} of simple functions that are uniformly integrable (see [4]) and
such that {s,} converges to f in measure. It is then shown that

s, dm converges uniformly for Ae.<Z. Our last result, already

A

mentioned above, used the essential ranges of {f,} (see [13]) and
the property of uniform integrability to yield a sufficient condition
for the sequence {f,} to converge to 0 in measure.

II. Results. We introduce some basic notations. Let K denote
a compact set, <7 the Borel sets of K, C(K, X) X-valued functions
that are continuous and defined on K with the topology of the sup
norm. Here X denotes a Banach space. Let u be a function from
X into C. For a > 0 let u, denote the restriction of u to the closed
a-ball of X. Let ||u,| = sup [|u(xz)| where the sup is over ||z]Za.
For § > 0 define

D;u, = sup ||u(x) — u(y)|| where the sup is over

)l <a, |yl = a, ||z —y|| <46. Let M(X, C) denote the space of
all functions from X into C which are bounded on the a-balls of
X, uniformly continuous on bounded sets of X and 0 at 0. Thus
if we M(X, C) then

w(0) = 0, |[u,l| < oo, liﬂDaua =0.
Let m be a finitely additive function from <# into M(X, C). We
set m (B) = m(B), and define
sv[m,, B] = sup || Tm(B,)x, || .
Here the sup is over finite partitions {B;} of B with ||z;|| < a. Let
sv;(m,, B) = sup || Im(B,)x;, — Xm(B,)y,||

where the sup is over finite partitions {B} of B and |z,]| < a,
vl < e, |2, —y,]l =06. Unless otherwise stated m denotes a
finitely additive set function from <# into M(X, C) satisfying

sv[m,, K] < o and lim sv;[m, K] =0.
a0

A property will be called true m a.e. if the property is true for
all t¢ A and if whenever BC A and Be.<#Z then m(B) =0. Let
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Zc; represents the characteristic function of C,. For disjoint C, we
define

SZXCixidm = Ym(C)x;

M,CK, X), C] will denote all scalar valued maps defined on C(K, X)
and satisfying

Tf + i+ fo) =T + )+ T+ f)— TU)
whenever f; and f, have disjoint supports

T0) =0

[Tl < oo
lim D,T, = 0 where D,T, = sup || T%; — Ty,| and
d—0

where the sup is over |[z||=a, |y =, o —y||=0. In [3], J.
Batt has shown that if Te M,|C(K, X), C], then T can be written

as T(f) = \ fdm where the nonlinear integral is extended from

simple functions to functions in C(K, X). Moreover || T, ||=sv[m,, K]
and D,T, = sv,jm, K|. If TeM,[CK, X), C], m, will denote the
corresponding measure. We now prove our first result.

THEOREM 1. Let {s,} be a sequence of X-valued simple functions.
Assume {s,} converges to f pointwise and assume that the set func-

tions S s, dm; are wuniformly countably additive. Then there
)
exists a unique, countably additive, scalar measure »r such thai
r(K) = lim,, ,mg s, dmp uniformly for KEe .<Z.
E
Proof. For every Ec.cZ we define
g s, dm,
i

oo

=2 2”[1

]

clearly # is a finitely additive set function on .<Z. It is shown in
[3] that m,(-)x is countably additive for xe X. In fact it is uni-
formly countably additive for [[z| =< «. It follows that @ is a
bounded countably additive function on .. Since {s,} converges to
f, by Corollary 1 to Egoroff’s Theorem (see [6, p. 95]). there exists
a sequence {A,} of disjoint sets of <& and Ne€.<# such that {s,}
converges uniformly to f on each A,, N is a #-null set, and K =

NUUA, Thus, S s, dmy = 0 for all n. Let B, = U}, A4,, clearly
N
B, ] N’ and the convergence is uniform on each B,. Moreover,

+ sup S s, dmy
A

Aew
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jgz (8, — sp)dms| = }Smﬂk( » = Spldmy| + ]S (85 — 8,)dmy

ENBRNN

< sv. |mq,, K]+

S s, dmy | + ]S s, dmy
EﬂBl’cﬂN’ 3

L‘ﬂBl'cﬂN'

where 7, = esssup ||s, — s,|| restricted to B, and where a = sup |x;|
where 2z, is a value in Range s, U Range s, where s, and s, are
restricted to £ N B,. The first term on the right goes to 0 as =
and p get large. The next two terms tend to 0 by uniform count-

able additivity of S s, dmy. Thus S s, dmy converges uniformly for
) E
Ee.Z and

»(E) = lim S s, dmy

n—oo JE

has the stated properties.

Note. The above proof can be extended to the case in which
pointwise convergence of {s,} is replaced by m, a.e. convergence.

We now define S Sfdm, = lim 8 dmy. The arguments above
show that S fdm; is well defined. Let L'(m,) denote all functions
f: K— X where f is the limit of a sequence {s,} of simple funec-
tions m, a.e. and where g( ) s,dm, are uniformly countably additive.

ProOPOSITION 1. If f,e L'(m;) and {f,} converges to f m., a.e.
and g fadmy are uniformly countably additive, then f€ L*(my) and
SE f%dﬂ’;; converges to SE fdm, uniformly for Ec<Z. Moreover

{ son

= svuzlmy, B] where || fllp is
the essential sup of f restricted to H.

Proof. The first part of the proof follows from the fact that
the proof of Theorem 1 remains true when {f,} replaces {s,}. In
addition it is clear that a sequence of simple functions {s,} may be
found which converges to f and for which {S

s, dmy } is uniformly
countably additive. Now:

()

som

= [| ¢ = s)am,

+ ' g s, dm,
E

+ ’ S s, dmy
BpNE

+ s, dmy

< ||,¢7 — soam

SE“\B}cﬂN’
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= svlls,llu, wlmy, K|+ !g L Sedimg | Hp(f — s,)dm,

FoR! /'k A
where B, are as in Theorem 1. As n -» co, the first term goes to
sv|| fllz, ., and the last term converges to 0. As k —co the middle
term converges uniformly to 0 in % and the first term converges to

|
sv|l fllz.

We now prove a version of the Egoroff Theorem which is
suitable for our purpose.

THEOREM 2 (Egoroff). Let {s,} be a sequence of real valued
simple functions, let f be a ieal valued function and assume that

sup |s,(-)x — f(-)x| converges to 0 m, a.e.
el fa

Then ihere exists a sequence {A,} of disjoint sets of =7 and Ne.=Z
such that

(1) K=NUU.A4.

(2) SuDi,ne,lS.()x — f()x| converges to 0 uniformly on A,.

(3) gys%(-)xdm =0 for all n and ||z|| = a.

I g s, (+ )xdmn,
wE) = X { 2

For each fixed z with

27L

1+ §up SAsn(~)acme
llz| = @, m, is finitely additive, bounded and since 7, (-) is count-
ably additive, it follows that #,(-) is uniformly countably additive
for |z|| £ a. Since 7, is uniformly bounded it follows that
{m,|||z!] £ a} is weakly sequentially compact (see [7, p. 305]). Thus
there exists a positive measure ), where lim; -, M,(E) = 0 uni-
formly for |jz| =<a«. Also A\, may be chosen so that A (H)=
SUD |42, | ML(E)| (see [7, p. 807].). Since Supj.is.|s.(-)x — f(-)x]
converges to 0 i, a.e. for [[¢| = a, it converges to 0, ), a.e. The
proof then proceeds as in Theorem 1.

COROLLARY 1. Let {s,} and f be as above. Assume g 8,(+)xdm,

(+)
are uniformly countably additive with respect to n and for ||z]|<=a.
Then there exists scalar measures r, such that

converges to 0 uniformly

sup |7, (H) — g S, dMyp
IS4 yol
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for Ec Z and ||z]| = a.
Proof. Let {4,} and N be as previously defined. Let

k

Hellse

L(sn — 8,)(*)xdm,

< sup || (o= s)(hedme| + sup || (s, — 5 )udmg
llzl'Se | JENBy lelise | JENBRNN
= sz(n,p)[mTy K] + sup S , Sn(')xdml'
lzllsal JENBRON’
+ sup S s,()xdmy
lizllge | JENBENN’
where B(n, p) = SUD|.i<, €8S sup |[s,(-)aXs, — s,(-)aks[. Hence

lim, e, B(7, p) = 0, the last two terms converge to 0 by uniform
countable additivity.

Note. We may write S F(xdmy = r(B).
E

Let M(K) denote all scalar valued functions on K that are
limits m, a.e. of simple functions.

THEOREM 3. Let {f,} be a sequence in M(K). Assume that
{fu()x} converges to f(-)xm, a.e. uniformly for ||z| < a. Assume
also that {f,} is uniformly bounded by some constant M. Then

{S f,‘(-)xme} converges to S F(Hadmy
E E
uniformly for Ee <Z.

Proof. Without loss of generality assume f, = 0. (Note that
fo and f, have disjoint supports.) Let {g,. be a sequence of simple
functions such that g,;1f,. Then

k'n,
On,i = %a?XEi(n)
and
k?’b
[, gndms = S armil Bwle
Let 3}, and 3}, denote sums over positive and negative terms.

S am Bkl = 3 aml Bl - 3 aml Bl
< 2Mvar m,(E)x .
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Since m,(-)x is countably additive (uniformly for |z| < «), the
{S gn,i(-)xme} are uniformly countably additive (with respect to
(+
n, i and for ||z|| < @). Hence by Corollary 1, limiws G (edm, =
F

S £u(-)xdm, uniformly for Fe < and ||z] < a. Also ﬂ( S yndms}
F .

is uniformly countably additive. So again {S f,,(-)xme}converges
E
to s f()xdm, uniformly in K.
E

Of course Theorem 3 is a version of the bounded convergence
theorem for nonlinear integrals. We now obtain a version of the
dominated convergence theorem.

PROPOSITION 2. Let {f,} be a sequence in L'(m;) and assume
that {f,} converges to f my a.e. Moreover assume

where g€ L'(my) .

§ ] = s ] i

< sup
FCE

Then fe L'(m;) and ig f%dmr} converges to S fdm, uniformly for
E E
Fez.

Proof. Since ge L'(m;), by Theorem 1, S gdm, is countably
additive and hence bounded. Since from the h;pothesis S fadmpis
dominated by the variation of gme,S f.dm, are Gﬁiformly
countably additive and by Propositi(an 1 the (i)'esult follows.

We now proceed to establish a partial converse to the above
result. In the work of R.K. Goodrich [10] the following ring of
subsets plays a central role. Let R be the ring of all subsets & of
K for which there exist nonincreasing sequences of continuous
functions {f,}, {9.} with f, — g, converging to X;. It is shown in
[10] that R is the ring generated by all compact G, subsets of K.
Following [10], if T is a (not necessarily linear) operator from
C(K, X) into scalars we say that T has a G-type representation if

T(f) = S fdm' where m’ maps the ring R into M(X, C)

and where m/'(-)x is countably additive for each fixed z. (Of
course, it is shown in [10] that every continuous linear operator on
C(K, X) has a G-type representation.)
We now consider two conditions related to the previous result.
(A) Theorem 3 is true with m' replacing m,.
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(B) Let {f,} be a sequence of scalar valued functions converg-
ing m’ a.e. to f and assume that [g fndm’, = SUDPpcz S gdm” for
E E

some g€ L'(m'). Then {S f%(-)xdm'} converges to S f()xdm’ for
E E
each fixed x.

THEOREM 4. Let Te MyC(K, X), C]. Assume that T has a
G-representation with respect to m’. Then under condition (A) or
(B) m'(:)x is uniformly countably additive for ||z] < a.

Proof. Suppose (A) holds: Let K, eR with E,| @. Then
m'(E,)x converges to 0 for every fixed z. By the Kluvanek exten-
sion theorem [11], m'(-)xz has a unique countably additive extension

to < and since by [3] T admits the representation 7'(f) = g fdm

where m(-)x is uniformly countably additive for ||z| =< a and since
m(-)x = m'(-)x, it follows that m' has the same property. The same
argument can be made under assumption of condition (B).

We now initiate a study of convergence in measure. In the
introduction we mentioned the works of W.V. Smith and D.H.
Tucker [15] and of D.H. Tucker and S.G. Wayment [16]. Their
examples highlight the great difference between convergence a.e.
and convergence in measure. We now define convergence in measure.
Let m, be as above. We say {f,} converges to f in measure if
svmA]| fu(-) — F()|| = 6} converges to 0 as n gets large, for every
a>0 and 6 >0 fixed. It is obvious, since the semi-variation is
subadditive, that if {f,} converges to f in measure then for every
fixed ¢ >0, >0, and § > 0, sv,m{||fo (-) — fu,(*)||=0}<e provided
n, = N and n, = N. Of course N depends on ¢, @, 6. We now define
an X-valued function to be m,-integrable if there exists a sequence
{s.} of uniformly integrable simple functions such that {s,} converges
to f in measure and such that for every ¢ > 0, a > 0, there exists
a number u (depending on ¢ and «) such that

sv |my;, E] < u implies H s, dmy | < ¢ i.e.,
E
snme} is uniformly continuous with respect to the semi-varia-

ti()(i)l. Recall that uniform integrability means that for every ¢ > 0
there exists K(¢) such that

JS s, dmy | < ¢ for all n .
{HsplI>E@}N4

In the introduction we have already stated that uniform integr-
ability has implications for the convergence of martingales. There
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are also strong implications for convergence properties in L”. For
example {g,} converges in g measure to ¢g with |g,|* uniformly
integrable is equivalent to the norm convergence in L* (see [4, p.
185] where conditions equivalent to uniform integrability are pointed
out).

PROPOSITION 3. Let f be m, integrable. Let s, be as above.
Then limg s, dmy exists uniformly for Aec Z.
A

Proof. Pick ¢ > 0, let K(¢) be chosen so that

'S s,dmy, | < ¢/4 for all n. Now pick u
{ils, 12 K ()}

so that svgm(F,) < w implies
that

< e/4. Now pick u' so

S s, dmy
Ey

sV (Mp)ge, K] < e/4.
By the subadditivity of the semi-variation pick N so that

va(E)mT{HSnl(') - Snz(‘) H > ?/l/,} <u

for #, = N and %, = N.
Let E, = {[[s,,(+) — s,(:)|| > «'}. Then

< /2 since

H 8,,dmy — S S, d My
fo jo

SV oMr(Fy) < u. Now

< sv,[my, K|+ /4 + /4 < 3e/4 .

g 8, dmy — S ,snzme
E} £}

Thus for all Aec.<7,

‘S s, dmy — S Su,dmy| < 2¢ .
A A

Thus limg s, dm, exists uniformly as Ae 7.
A

Note. If we denote this limit by m(A4), then m; is a measure
on <% by the Nikodym theorem (see [7, p. 160]).

Let f be a function from K into X. By the essential range of
f over some set K C K we mean {xe X|m [{||z — f(-)] <e} N E]+0}.
We denote this set by ery(f). f will be called an essential range
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funection if er,(f)N f(F) = ¢ for all Fe<# that are not m,-null
sets. The set erz(f) was introduced by M. A. Rieffel in [13]. It is
shown there that if f is the pointwise limit of a sequence of X
valued simple funections and if g is a positive measure then
ery(f) N f(E) # ¢ provided (&) > 0. The separability of f(Z) and
the positivity of ¢ were both used in the proof of this result.
ery(f) is used in [13] as a bound on local average ranges which
in turn play a key role in establishing the vector valued version of
the Radon-Nikodym theorem.

LEMMA. If for every pair (A, B) of nonnull m, sets of 7

er.(f) N f(A) # ¢ and ery(g) N g(B) # ¢
where f and g are essential range functions and if || f(-) —g()| <
a then for every xcer,(f) and & > 0 there exists yecery(g) such
that ||y — x| < a +e.
Proof. m.[{xe X||lz — ()] <e/2tNE]+¢. Now
erz(g) N g(&) # ¢ so pick y e ery(g) N g(E)
such that {||y — ¢g(t)]| < ¢} N {t € E} has nonzero m, measure. Thus

llz — F()]] < ¢/2, for some te K.

1f@) — 9@ <a
ly — 9@ <e/2.
Thus [jo —y|| < a +e.

Let {f.} be a sequence of functions from K into X. We say
that er(f,) are bounded away from 0 over the sets {||f.|| = a} if
for every ¢, > 0 there exists ¢, > 0 and a partition {A;} such that
for all L > 0

12 el A0 {1l > adl(@ia) | > e imply
svlm,, AN{||f.]] > a}] < e, where A = L;, A, .
Here > denotes the sum over y,,c X satisfying
leull < L and y,, € er (£ 5

Note. If X denotes the scalar field the above condition will be
true if 0<é<wy,,< L. That is, if the y,, are bounded away
from 0.

Finally we say that er(h) transfers uniform integrability if
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for every ¢, > 0 there exists ¢, > 0 and constants K, >0 and u > 0
such that if |3 m,(B)x;| < &, where ||z;|| = K, and {B;} is a parti-
tion. Then |3 m.(B)y;| < & provided ||z; — ¥,|| < w and y, € er, (h).

Note. The above condition may be rewritten

IS sdm, | < &, where s = >\ X,
sllzK,

implies SH ’ s'me' <& where s =3X;y, and y,eery(h) (in
8'—sll<u

particular ||y;|| = K, — u). Roughly speaking uniform integrability
is transferred to s'.

THEOREM 5. Let {f,} be a sequence of m, integrable functions
we assume

(1) f, is an essential range function.

(2) er(f,) are bounded away from 0 on sets of the form
(1£]l > a} (for all a>0).

(38) FEach er(f,) transfers uniform integrability.

If {SA f,,,me} converges to 0 uniformly for Ae<#, then {f.}

converges in measure to 0.

Proof. Let ¢ > 0. Then H f%meI < ¢ for all Ae<# and for
A
n large enough. Let {s, .} be a sequence of simple functions uni-

formly integrable with {s, ,} converging in measure to f, as K goes
to infinity. By (1), for » fixed, we can pick a constant M such that

S,.dmy | < e for all k and Ae <7 .

‘S(Hsn,k\bm—lmA

Now choose 6’ so that 0 < ¢’ < 1/2 and 6" < u/2 and sv,, ., [m,, K]<e.
Let

A0 = {tlls,:() — fu(O) ]| = 97}
Since {s, .} converges in measure,
sv,my[A%(6")] converges to 0 as k— o .
Choose k large enough so that
svymo[AL (8 N K, ] = 0 where

A% (0") denotes the complement of A%(6’") and where s,,,=>; E; .. 1%:.0.5-
Condition (1) implies |>) mo(E; . 0)%;: 0] < € where > is the sum
over ||x;,.:|l>M—1. Since s,, is a simple function ,,.¢
ery, [Fi..NA;(0)]. By the previous lemma choose ¥;.:€



342 A. DE KORVIN AND C. E. ROBERTS JR.

erfn[Ei,ﬂ,kAfb,(é’)] with || Yi,n — Tonrll < 20°<u. Let s,,=>Xp
Then by condition (38)

i,”,kxi,n,k‘

=

' Ss”’kme - Ss;,,kme S, ndmy

| |
(18,5 1200} {18, 11220

+ IS Sn,kme - S , S;,,kme
{118y, 1 1 <M} {Hsq, k1 <M}

=< 26 + sy Mg, K] .
Thus the right side is less than 3c. Now choose % large enough so
that

f.dmy < ¢ for all L ;

’ S(Ilf%lbo“’) N{lisp, kI ISL)

<This can be done since {S f,,,me} converges to 0 uniformly for
A4

Ae%’.) Let A={|f.l >0} n{|&.] <L}, then shrinking o' if

necessary

A

§ ram

+ IS f”me - S S,,,kme
A 4

]S s, wdmy
A

+ )S S, dMy — S s dmy
A A

< be.

(The second term on the right is less than ¢ since by Proposition 3

{S s,‘,,,me} converges to S f.dm,; uniformly as Ae%.) The rest of
A A

the proof follows from condition (2).
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