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bo-RESOLUTIONS

MARK MAHOWALD

This paper considers the Adams-Novikov type spectral se-
quence with b0 as the spectrum. The action of the generator
of m3bo in the spectral sequence is completely determined. The
result is a complete determination of the v,-periodic homotopy
of the stable sphere.

1. Introduction. Let bo be the Q2-spectrum representing con-
nected real K-theory. This spectrum is a ring spectrum with a unit
and H*(bo) = A/A(Sq", Sq*). (Unless otherwise noted, A is the mod2
Steenrod algebra, all coefficient groups are Z,, and all spaces are
localized at 2.)

Associated to a spectrum with unit, like bo, we have a tower
of spectra

S° S, S, ... S, Sei
[ e ] |
bo S, ANbo S, A bo S, A bo

where S, A bo e S, < S, 1s a fibration and I: S° — bo is the unit.

If we use the homotopy functor =*, we get an exact couple with
it =7, (S, A bo). Under reasonable hypothesis on the spectrum,
E** is an associated graded group of 7,(S8°. This is true for bo
since 7,(S,) =0 for 7 < 3s and so for ¢t — s < 3s, EY' = E%' for large
enough 7. This spectral sequence will be written {F,(S°, bo, 7)}.
Clearly m,bo acts on E, but d, is not a 7.bo module map. Never-
theless, if two classes in E, are related by the action of a class in
7.bo and they both survive to E., then we will say that these two
classes are still related in this manner. In particular the class which
generates wbo is a basic periodicity class which we will call v:. (The
name is suggested by BP-theory and is discussed in [3].) A class
such that all multiples of it with ¢!* are non zero is called a v,-
periodic class. Classes in £, which survive to E. but for which all
T,.bo compositions except the identity do not survive will be said to
generate a Z, vector space. Our main theorem is:

THEOREM 1.1.

(a) E(S bo,m)=Z t=0
=Z, t=12mod8
=0 oall other t.
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The classes for t =1 and 2mod 8 are v,-periodic.

(b) ELN(S°, bo, @) = Z,o(k) t = 4k
=Z, t =1,2mod8
=0 otherwise

where p(k) 1s defined by 4k = 2°*~'mod 2°® and all the classes are
v,-periodic.

(e) EZ4(S°% bo, ) =0 for 6s >t + 12 and is a Z, vector space (as
a 7, (bo) module) for all s > 1 and all t.

This result was essentially announced in [6]. Since that time
Milgram [12] and Carlsson [1], [2] have also investigated bo resolutions.
The setting in the unstable range has also been investigated and
results which are based on Theorem 1.1 were described in [7]. A
second paper will be devoted to discussing that material.

The edge result stated in Theorem 1.1 part (c) guarantees that
the only classes which have a v, type periodicity acting on them are
described in parts (a) and (b). Other classes may admit finite mul-
tiples of v, but must form finite families. This is discussed more
fully in §6 and also in [3].

The paper is organized as follows. Section 2 states the main
ancillary results, which are Theorems 2.4, 2.5 and 2.7. Most of the
section is devoted to definitions and the introduction of terminology.
In addition consequences of 2.5 and 2.7 are obtained. The proof of
2.5 and 2.7 occupies §3. Section 4 contains the proof of 2.4. Section
5 analyzes the bo resolution and contains the proof of the main
theorem. Section 6 discusses v,-periodicity but a more detailed dis-
cussion is contained in [3].

2. The homotopy of bo A bo. Let g: S®*— B°0 represent a
generator. Let 2%: 2°S®*— BO be the double loop map. Clearly the
space 2°S® is homotopically equivalent to S* x W where W is the fiber
of 2°S*— S'. Let F,(2°S%) be the May filtration. (Compare [11] and
[12].) This induces a filtration on W, F,(W). Let f,: F,(W)— BO
be the composite F,, (W) C F,,(2°S?) ¢ 2°S? e, BO. Let B(n)= T(f,),
the Thom spectrum defined by f,. The following are some properties
of B(n) which follow immediately from the definition. (See [4] and
[5] for calculations of this type.)

2.1. B(n) A B(m)— B(n + m). The induced map in homology
is onto if »n = 2" and m < 2°.

This follows from the fact that F,, X F,,— F,.:. using the
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multiplication in 22S®. The homology of 2°S® is a polynomial ring
Zfa,, sy -] with dim @iy, = 2° — 1. Then H (W) = Z,[a%, s, 7, -+ ]
If we assign a degree to x; by degx, = (¢ + 1)/2 then H.(F),,) is the
vector space generated by all monomials in %, of degree < 2n. These
facts give 2.1 when translated to Thom spectra.

2.2. B(n)c B(n + 1) and Uy, B(n) = K(Z, 0)(localized at 2).
This is discussed in detail in [4].

2.3. If M,(k)=A/A(Sq', XSq*|n>2k) then H*(B(n))=DM,(n). (We
will sometimes denote M, (k) as M(2k) @,, Z, where A, is the sub-
algebra of A generalized by Sg'.)

This follows immediately from 2.2 since H*(K(Z, 0)) = A @, %Z,.

Using the spectra B(n) we define 2, = V,2¥B(1). The key
result about bo A bo is the following.

THEOREM 2.4. There is a homotopy equivalence between bo N bo
and 2, N bo. (All spaces are localized at 2.)

This theorem was first proved in 1969 [6]. Milgram [12] found
another proof which proceeds from a different point of view. The
proof given here, in spirit, is like the original one but the inter-
vening years have seen a development particularly in the Thom
spectrum approach. The following proof has profitted from this.

The first step is to get an algebraic version of 2.4. We need
to show that as modules over the Steenrod algebra H*(bo A bo) and
H*(2, N bo) are isomorphic. Recall that H*(bo) = A @, Z, where
A, cC A, is the sub Hopf algebra generated by S¢' and Sg®. Since
the A-module structure of A@,, Z, ® M is determined completely by
the A,-module structure of M, we need to determine the A,-module
structure of A@,, Z,. Theorem 2.5 will do this but it needs some
introduction.

Using the Cartan basis representation we have a Z,-basis for A
given by S¢’ where I is admissible. (I = (4, 4,, -+, %;) and 4 ;= 24,4,.)
Then 2S¢’ is also a basis where X is the anti-automorphism of A.
Since Sq¢'Sg™ = Sg**+' and S¢'S¢*” + S¢'Sq¢*"Sq* = Sg*"+*, we see that
in order for a class XSq" to be nonzero in AQ, Z, i, = 0 mod 4.
Also since S¢*S¢*"* + S¢'S¢*" = S¢**Sq* we see that 1, = 02). A Z.-
bases for A @, Z, is given by considering XSq’ with ¢, = 0(4) and
i, = 0(2). The proof of 2.5 will give this. A Z-basis for M,(k) can
be given by XS¢?, I admissible, ¢, = 0(2), and 4, = 2k. Thus each
class in M,(k) can be identified with a class in 4 by this basic choice.
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Then M, (k)XSq** will mean the action of A on XS¢* restricted to the
subspace of A represented by M, (k).

These comments nearly complete the proof of the following.
What remains is to show that there are no further relations and
that the left A, action is correct.

THEOREM 2.5. Let g*: @, >, "M,(k) > A@. Z, be defined by
S M (k) — M(k)XSq* € A @,,Z,. Then g* is an isomorphism of left
A,-modules.

The proof will be given in §3.

The next step is to calculate the homotopy of bo A bo. We will
use the Adams spectral sequence and, in view of 2.5, all we need to
do is to calculate Ext, (M,(k), Z,).

The key step in this calculation will be the following. First
some notation. Let {bo‘} be a minimal Adams resolution for bo. By
this we mean that the spaces bo® fit into a sequence

bo bo* coo B gy

and the fiber of bo® < bo**' is a generalized Eilenberg MacLane space
II: K(Exti(Z, Z,),t — i — 1) and p} is zero. Let a(k) be the number
of 1’s in the dyaic expansion of k.

PROPOSITION 2.6. If k = 0(2) then A @42, ® M(k) is stably A
isomorphic to H*(bo***). If k=2l + 1, then AQ. Z, R M(k) is
stably A isomorphic to H*(b spin*~*). (bspin® 18 defined analogously
to bo'.)

This will be proved in §3. Note that bspin = M,(1) A bo, see
[10]. This proposition yields immediately.

THEOREM 2.7. For s >0 and if k = 2, then Exty/(M,2l), Z,) =
Extyit-etitid-a(z 7). For s >0 and if k=20 + 1, then

Ext{ (ML + 1), Z) = Extyfs—oss-0(f(1), Z) .
Theorems 2.5 and 2.7 ecan be combined to give:

THEOREM 2.8. If s > 0 then
Exts (H*(bo A bo), Z,)
— é [Exti-él—u—a(l),t—4l—a(l>(Z2, Zz) @ Extz—:u—a(l),t—4l—a(l)—4(Ml(1), Zz) .
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Since both Ext%/(Z,, Z,) and Ext%/(M,(1), Z,) are zero for ¢t — s =
3(4), there can be no differentials in the Adams spectral sequence
for bo A bo. This gives:

THEOREM 2.9. In the Adams spectral sequence for boNbo, K,=F...

This completes the homotopy calculations for bo A bo, (modulo
the calculations done in §3 for 2.5 and 2.7). The rest of the proof
of 2.4 will be done in §4.

3. The proof of several results from §2. (The first part of
this section is heavily influenced by Peterson’s lectures [13].)

We begin by studying the left A,-module structure of A @, Z..
It is easier to do these calculations in the dual. We have 4: 4 —
A@., 7, In each gradation each side is a finite dimensional vector
space over Z,. In the dual we have ZJ[§, -] = A*D(AQ@, 2)".

The subset is more easily identified in the image of A* under
X, the anti-isomorphism. We represent this image as Z[(4 ®., Z.)*].

PROPOSITION 3.1. As left A-modules
XKA ®A1 Z2>><] = ZZ[E;‘, E;y 537 o ] .

. R S 2 S 1
Proof. Since A®., Z,=AJA(S", S¢’) we have A @ A LTV GEET)
1 1
A AJA(Sq, Sg))—0 which gives A* @ A* ZEDVEEED v 41 4(sq,
2Y) * x R(Sq%) © R(Sq¢") " %
Sg)}* — 0 and finally A* P A* —————— A* — A[(A@., Z.)*] — 0.
But &8¢ = &, + &,_,. Hence the proposition follows.
Assign to each &, degree 2°' and each monomial & = &gk ...,
the degree 37,2971,
Let N, be the Z, vector space generated by monomials of degree

4n. Then Zz[gi’ 5%, 53; . ] = @n N4n-
PROPOSITION 3.2. As left A-modules ZJ|[&, &, &, -] = @D, N,,.
Proof. The left A action is given by Sqg, = & + &_,. In the
absence of &, &, &, & and products, degree (Sqg'¢’) = degree & and
degree (Sq%’) = degree &’ (of course 0 has every degree).

PROPOSITION 3.3. XN¥ = M,(n).

Proof. Using the multiplication A* and the multiplicative nature
of the degree we have maps
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which are monomorphism if n # 2° and 45 = 2° and 4k < 2°. If n = 2°
then the class corresponding to &,., generates the kernel. Now using
the obvious isomorphism XN} = M,(1) and the kind of argument of
[5] §4 we get the result.

Combining 3.2 and 3.3 we get the proof of 2.5. Using this
explicit calculation we also can get the following. Let Q, = Sq'and
Q. = S¢® + S¢*Sq*. Then Q; acts as a differential in M for any 4
(or A,) module M.

PROPOSITION 3.4. [13] H (XA ® Z)*, Q) = Z,[&] and
H,.(X(A ;@Zg)*, Q) = EE, & ---).

Proof. Both of these are easy calculations from 3.2.

COROLLARY 3.5. H*(M,(2Y), Q,) = Z, generated by the class in
dimension 0 and H*(M,(2Y, Q,) = Z, generated by the class in dimen-
ston 20 — 2.

We now begin the proof of 2.6. The strategy will be to construect
spaces R(n) with the properties:

(8.6.1) There is an A-module map f;}: H*(B(n)) — H*(R(n)) which is
a stable A,-isomorphism.

(8.6.2) There are maps ¢,: R(n) A bo — bo™*™ n = (0(2) and
g.: BR(n) A bo —— b spin®*~1—*™ 4 = 1(2)

and g are stable A-isomorphisms.

It would be nice to construct a map f, which induces the coho-
mology map but we have not done so.

Let Y, be the ¢th stage in an Adams resolution for S° constructed
by iterating the sequence Y, — S°— K(Z, 0). Then YV, =Y; AY,_;
for any ¢ and j.

LemMMA 3.6.3. Exty(H¥(X AY,), Z,) = Ext{**(H*(X), Z,) for
s > 0 and any spectrum X.

The proof is immediate.
We will also use the following obvious lemma.

LeMMA 3.7. If there is a map f: X —Y such that
fo Exty(H*(X), Z,) — Exty'(H*(Y), Z,)
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18 an isomorphism for s > 0 then H*(Y) is stably A-isomorphic to
H*(X).

Let R(2°"') be the cofiber of the standard map RP¥"'-2— S°
(M is the stable adjoint of the composite RP— SO — 2S*.) Since
S°—{>bof—»bo, where ¢ is a generator, is 2° times a generator, the
composite P*"'-* — §° — ho*~! is inessential if i > 0. Hence there is
a map

gzi—ﬂ R(z‘b—l) — bOﬂ_1 = bozi—azi .

For n = >} e2" and ¢, = 0 or 1 let R(n) = A R(¢;2°) where R(0) =
S°. If n = 0(2) there is a map §,: R(n) — A*, bos®"'-1). By 38.6.3
H*(Abosi®*'=) ig stably A-isomorphic to H*(bo—awtr-nb)  The
map g, results by multiplying both sides by bo and multiplying
out.

If n=1mod2 then ¢, =1 and R(xn) = R(n — 1) A BR1). This
gives R(n — 1) A R(1) — bo*»-V-=t»=D A R(1). But since R(1) A bo =
b spin, H*(bo*» V=0 A R(1)) = H*(bspin*»~-¢»-1)  This completes
the construction of the maps g,.

LEMMA 3.8. The maps g, induce stable A-isomorphisms.

Proof. By the way the maps are constructed it will be sufficient
to show that the lemma is true if » =2°. Since R(1) A bo =
bspin (R(1) = B(1)) there is nothing to show in this case. In general
we will show that

Exty!(H¥(R*™, Z,) = Exty* v+ 7, Z,) = Exty"(H*(bo" ™), Z,) .

Then we will show that g¢,; induces this isomorphism. This will
complete the proof. Let the image of A, Q(@I, H*(R(2)) in
H*(R(2") be F,. Then F,/F, , = A, @,,%,. Thus there is a filtration
H*(R(2") so that the associated graded is just [Bi=! 394, Q. Z.]1 D
Z*T=M(1). There is a spectral sequence going from Ext,(, Z,) of
this associative graded module to Ext, (H*(R(2%, Z,)).

But

Ext[“((ié)gzﬁAl ®., %) B I M), 7,)

2i—1

= @ Exti™(Z, 2,)® Exty 7 (M,1), Z) -

So there cannot be any differel_ltials. These groups are easily seen
to be the same as Ext%'(H*(bo* ™), Z,).
We now need to show that ¢, induces this isomorphism. Let
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3P, % RP¥ ' be the attaching map of the next two cells ie.,
the mapping cone of ¢ is RP*". The map ¢ gives a map ¢*: P¥i_, —
R(29). Since the bundle over P*"' has order 2¢ the composite g,iq"
must be essential; it must be essential in R(2%) A bo also. There it
must represent the composite Pzii_, — S g R(2Y) A bo. Thus g,
must induce an isomorphism for ¢ — s = 2'* but this and the natural
bo action forces an isomorphism everywhere.

Next we need to construct maps from H*(B(n)) — H*(R(n)). By
the definition of R(n) and property 2.1 of B(n) it will be sufficient
to construct F3%: H*(B(2")) — H*(R(2)). Since R(1) = B(1) we need
only consider ¢ > 0. Following [5] we have M(27+) — H*(ZP* ')
which is an epimorphism of A-modules.

The image of A(Sq', XSq*|k > 2+") — A — H*(I P is just the
class in dimension 1. Hence there is a map between M,(29) and
H*(R(2%). This is the map

LEMMA 3.9. The map f}: M,(2°) — H*(R(2")) is a stable A-iso-
morphism.

Proof. We need check what the map does in @, homology.
Clearly f;; induces an isomorphism in the @, homology. Since H,(M,(2°),
Q,) = Z, generated by the class in dimension 2*' — 2 and ff maps this
class nontrivally we must verify that its image in H*(R(2%) is not
a boundary. Indeed it is easy to see that H . (H*(R(2%), Q,)) = Z, gen-
erated by the class in dimension 2t — 2, (since Sg*a'"! = a*** and
Sq¢*Sq'at™* = a'"+*). By the theorem of Wall [13] this implies that
¥ is a stable A,-isomorphism.

This now completes the proof of 2.6 since if n = 0(2)

Exty (F*(B(n) A bo), Z) "2 Exty (H*(R(n) A bo), Z)

L Bxty ! (H*(bo™ ™), Z,) .

If n =1(2) we have the analogous formula.

4, The proof of 2.4. We begin with the following corollary of
(3.6.2.)

Lemma 4.1. If f:B(k) A B() > B(k + 1) is the muléiplication
map of 2.1 then f* is a stable A,-isomorphism if k = 2 and | < 2.

Proof. Indeed H*(B(k) A bo) and H*(bo*™~**) are stably A-iso-
morphic. Thus bo?—4® A po?—* = poxk+b-«k+h {f F = 2! and [ < 2%,
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We need to determine what happens if k =1 = 2%

DEFINITION 4.2. A sequence N’ — N — N of A,-modules is stably
A, exact if there is a free A,-module which can be added to each
term to get an exact sequence.

PROPOSITION 4.8. A stably A, exact sequence of A,-modules induces
a long exact sequence in Ext groups for s > 0.

This i1s immediate.

Motivated by Lemma 8.7 we say f is a stable A-isomorphism
through dimension ¢ if f induces an isomorphism in Ext:’ for s > 0
and t —s<¢.

These ideas can be illustrated by the following example. Consider

B(1) A B(1) — B(2) — ¥*M,. N\ B(1) .

The induced maps in cohomology give an A,-stably exact sequence.

Pictorially we have

B(1) A B(1) B(2) v A, 2¢Ms. A B(1)

The curved lines indicate Sg¢® and the straight lines indicate Sg'.
This example generalizes to give

THEOREM 4.4. The cohomology sequence induced by
B2 A BE) — BE@+y — 37, v B
18 a stably A, exact sequence.

Proof. It is sufficient to verify the result for cohomology modules
which are stably equivalent. Thus the map f is equivalent by 3.6 to

h: bo? Pt —— o Tt
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and % in dimension zero is a degree 1 map. (Note that it is not
obvious that such a map exists but the multiplication f does exist
and via 3.6 we get h.) The following charts will illuminate the
argument.

| | - ] 1
p b - - -
b [ -+ +4 4
4 b 4- —+ ~
2 4 3 4 4 -/
. ; 1 J
j =0 L 3 ]» b
t—s=2"3 -8 —4 i+3 248 8 —4 i+3
BExtyt(H*bo?**%-2, Z,) Ext  (H*(bo?* %), Z,)

Let a be defined by the cofiber sequence

IM, A M, —*> M, — M, A B(1) .

Let j be the composite 3*"*-2]f, — S+ po?***-2,

Clearly a-j ~ 0 and so we have 5,3 "M, A B(1) —bo*"*-% Also
it is easy to see that hj, is null homotopic.

Thus there is a map %: 00> =% U,;: CM,, A BQ1) A bo — bo? ™.

An easy calculation shows that & induces an isomorphism in the
Ext, groups except if s =0 and ¢t = 2'** — 6. This is equivalent to
the theorem.

Now we can prove 2.4. We proceed by induction. Let 2" =
Vi<a 2¥B(j5). Clearly 2'— bo A bo and 21 A bo— bo A bo is a homo-
topy equivalence through dimension 7.

Suppose we have a map h;: Q%' — bo A bo such that 24~ A bo—
bo A bo is a stable A-isomorphism through dimension 2*2 — 1. Then
by 4.4 we see that [2%-' A (S°V Z¥"B(2:~) A B2Y))] A bo — bo A bo
exists and gives a stable A-isomorphism through dimension 2+ — 5.
Consider the diagram

Z'zi-rs_SMz: A B(l) — 22i+23(2i_1) A B(2'7%) N\ bo — bo A bo
22i+2B(2i) .

We need to show that the composite represented by the top row is
null homotopic. The .composite is clgarly filtration = 1. Therefore
it factors through 2*-' A bo. But 2*-' A bo is A equivalent to

v [Z’ijo4j—a(il v Z’Ei+4b Spin4j—a(i)] .

j<2i—1
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The 2'** — 1 connected cover is just a wedge of 3**’bo. The gen-
erating homotopy classes have various s filtrations depending on which
piece of £ it came from. (The reader is encouraged to draw an
Ext diagram using 2.8 for ¢ = 2, 3 or 4 to see this clearly.) There
is a map of bo’' — bo for any ! and this map induces an isomorphism
in homotopy in dimensions greater than 21 + ¢, where ¢, = 0, [ = 0(4),
= —-1,1=14), = —2,1 = 2, 8(4). Thus there is a map of degree
divisible by 2'*' on the bottom cell of X*"’B(2i-)) A B(2"") A bo —
Q¥-1 A bo so that the following commutes.

I, A BQ) — 3 B@2) A B2 A bo——>bo A bo

| |

I¥EB@) A B2 A bo ———— 2571 A bo ————— bo A bo

The bottom row has degree divisible by 2¢** on the bottom cell.

Adding this map to the product map we have a map 3***B(2"-") A
B(2-*) - bo A bo of the right degree (1 on the bottom cell) which
can be extended over I**’B(29). This gives 2% ' A (S°V I¥"B(2%)) —
QY"1 po A bo with the desired properties. This completes the
proof.

5. bo resolutions. We now are prepared to analyze the bo
resolution. In order to facilitate the calculation we introduce another
spectrum. This and similar spectra are described in [4]. Let S°—
B?0 be a generator and let f: 28°— BO be the adjoint. Let X be
the Thom spectrum of f. (This is called X; in [4].) The key prop-
erties of X are the following:

5.1. X is a ring spectrum. (See 1.1 of [4].) The proof uses
the fact that the Thom spectrum of a bundle classified by an H-map
is a ring spectrum.

52. X A X =28 A X and this homotopy equivalence is induced
by the composite map g given by

28 x S 050 % 08° x 08X 088 % QS
where 4 is the diagonal and g is the multiplication. The homotopy
equivalence the other way looks the same except 4 is replace by
A(x) — (®, 7). We will call that composite k. Clearly ¢ and h are
homotopy equivalences and one is the homotopy inverse of the other.
(Again see [4] for a fuller discussion.)

5.3. The bundle f has a bo orientation o: X — bo and o* induces
an isomorphism in @, homology.

Proof. Consider S* A, Stx .- x S§*— 028° Since in the Thom
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complex of 4, of, XSq* is also nonzero and XSq¢’ has the same Cartan
formula as Sq¢* (with S¢* ® Sq* replaced by XSq¢' ® XSq*) we see that
XSq¢* U is nonzero in H*(X) for each k. But (2.4.1) shows that XSg¢*
on the fundamental class of bo generates the @, homology.

Consider a resolution of S° by X. This gives the following
diagram

2—'——>X2/\X

(5.4) —XAX

W —— Mje— P

— X .

Since 0: X — bo there is a mapping of resolutions

S° X Xz
N
S, S,

For resolutions of this sort the E, and E,-terms are more easily
described in the following way. Let Ibo be defined by the cofiber

sequence S bo 2 Ibo. (IX is similarly defined.) Consider the
sequence of spectra where 1 is the identity map and the trailing
S”s are suppressed. In particular

bo = bo A\ S* ——— Ibo A bo
P A G
is the first map.

bo 225 Ibo A bo ——— (Ibo)* A bo— ++-
(5.6) P
mﬁ([bo)"/\bo—» cee
PROPOSITION 5.7. The E, chain complex of the bo resolution s
the chain complex resulting from the sequence of spectra 5.6 after
applying the homotopy fumnctor.

This is a standard result.

The results of the first three sections assert that the homotopy
of (Ibo)° A bo is a sum of modules of the form =, (bo’) for various
values of j together with Z,-summands of Adams filtration zero.
We will always disregard the Z,-summands of Adams filtration zero
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in this resolution. The . (bo’) modules are given by 3.6. In par-
ticular (Ib0)° A\ bo = 27 A bo and H, (H*(29, Q,) is in 1 — 1 correspon-
dence with the distinct b0’ modules. Since the map o: X — bo has
the property that o* induces a @, homology isomorphism we can
analyze d, by looking at the X-resolution. The first result is the
following.

THEOREM 5.8. The following diagram commutes

IX) A XELPAS (rxyn A X

; ;
QS A X — (8% A X
where 0, = X(—1)'6% and 0 is induced by the following map of spaces:
05: 08 X oo X QS —— 028" x ... X 28"
o + 1 factors o + 2 factors
Si=1X""---1,41x---%x1,

Proof. The map 1 A p A L, and the resulting chain complex is
equivalent to

Xa+1 F ) X0+2

where F'= Y(—1)F* and Ff=1X --- X 1,¢,1---1 where the ¢ is
in the ith place. Consider the composite

(.QS )a+1 T 1, (QSE)"‘H h_;_) (935)04-1 —— e = 1, (QSs)u+1

TXIx o xFx i x] S o (@8

—————— .. 50-[—2
1xgx1 lxg(.QS)

The Thom complex picture is
(:-QS )"/\X——)(_QS )GH/\X/\X——-)"'-——%X"'H fi Xo+
— 0283 A X s .. — (282 A X .

The map h is just h(z, y) = h(x, v'y). The composite - which
induces the homotopy equivalence (2S5)° A X — X7t ig

h’(xly Tty wa+1) = (wly x—ly mZ; w;lx(«}y Y wu_lxa'H) .

The “differential” map just inserts a base point in the <th position.
The map g just unravels the map giving (x,, ., s, - - -, 2y, Zsy sy Tty
-+, Z,41). This is the assertion of the theorem.
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COROLLARY 5.9. The maps 6% for v < 0 are w,(X) module maps.
07 18 not a w(X) module map.

We will analyze the differential in the bo resolution by the
following device. Each class in H,(H.(2°), Q,) is identified with a
class in H,((2S%°). We will determine what happens to the A,-module
so determined by tracing it in the X-resolution sequence. What we
will prove is that by just considering the part of the differential
which is a bo map, we get an acylic chain complex except for ¢ = 0
and 1 modulo, at each level, elements of Adams filtration zero. To
begin we need the following.

THEOREM 5.10. The construction of the bo splitting can be made
so that the following diagram commutes modulo elements of Adams
Siltration = 2.

bo N\ bo—— 2. A bo

0/\01 {q/\o

XANX—028 N X
where g: Q8% >V ;o0 S¥B(j) is the stable map QS —V 0 3F —% Q.
and ¢: S°— B(j) 18 the inclusion of the bottom cell.

Proof. The splitting of X A X can be constructed by using the
analogous induction argument to that given for 2, A X. The fact
that we needed to consider the possibility of modifying the argument
at each power of 2 given a possible obstruction to commutativity.
But we were careful to show that the modification was always done
by a class of high filtration and only involved the bottom class of
B(j). Compare the proof of 2.4 given in §4.

Now we are prepared to prove the main theorem. The first step
is the following.

THEOREM 5.11. FEach homotopy class in w,.(I°bo A bo) is either
of Adams filtration zero, or in the image of d,, or is mapped
essentially under d,, o 6 =0 or 0 =1 and the homotopy can be
identified with w.(B(1) A bo).

Proof. The strategy of the proof will be first to look at the
part of the differential which preserves Adams filtration. Then we
will look at the part which raises filtration by 1 and see that these
two considerations cover all the homotopy except as described in the
theorem.
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The first part we will accomplish by noticing that the resolution
is really a standard resolution of an exterior algebra. To set this
up recall that I°bo A bo — VY X+ +i«B(j) A --- A B(j,) A bo. We
label the wedge on the the right by V_., 2'"'B(N) A bo where ./ =
{N = (n,, - -+, n,)}, BIN) = B(n,)AB(n;) A\B(n,) and |N|= Z4N,. Sup-
pose |N'|=|N”| with N'e_#,and N"e€_47,,. The map I"¥'B(N")A
bo— V_- 2¥'B(N) A bo 4, Vi, 2Y'B(N) A bo— ¥ B(N") A bo is
zero if N’ and N” are not “adjacent”. By this we mean that »! =

" for 1 < s, n, = n),, and n; = n{;, for ¢ >s. The map is a map
of degree n'»’] between the bottom cells otherwise. This is the

content of 5.%. When the degree is 1(mod 2), i.e., when [Z?,] =1

mod 2 then the composite is a homotopy equivalence modulo a wedge
of K(Z,)’s on each side. Indeed

—

BONY) A bo = bo =iy — ™ B A o
n;

n’

= | " |po!¥Vr-Tatmptainp-atnily)
n
"

But

n;
(a{ ,} = a(n}) + anl’,) — a(n§)> mod 2 .
ny
Thus to discuss the filtration preserving situation it will be sufficient
to determine how the bottom cell of each B(N) maps. To do this
we need look at the resolution

G12) Q—sone it oA — e —

and apply homology and then take the homology with respect to Q,.
H*(H*(Q), Qo) —_ H*(H*(QZ), Qo) tee

This complex is just the same as

(5.13) *(QS5)———>H*(QS5 N 283 )———~>H (2S5%) —

Finally this complex is just a resolution of an exterior algebra and
its homology is a polynomial algebra on generators, .57 with dimension
2* and of filtration 1. These generators correspond to B(2Y). Thus
there is a way to write H,((2S%°) as a sum _+.° + &, + 2, so that
0,(&,) = %,+, and 06,_+7° =0. The classes _#,° can be chosen so that
N = {(nl)lnz = 2% and j; = Jin).

Now we look at ..#;° = {(n,)|n;, = 2% and j, < 7,1}
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LeEMMA 5.14. Let Ne.4,;° be such that n,_, <n,. Then the
compostte

SWIB(N) N\ bo — 27 A\ bo — 27 A bo — ZW'B(N') A bo

where N' = (n]) and n; =n,, s < 0, N} = Ngp = Nyry 18 @ homotopy
equivalence mod element of Adams filtration zero.

Proof. As in the preceeding proof we compare with X. In this
case we have the binomial coefficient (Z" > Recall that », = 2% and

/2

so the coefficient is 2 X k where k is odd.

Now B(N) = bo''"¥1=22 and B(N') = bo''¥'=o-22 Thus a map of
Adams filtration 1, but not higher, on the bottom cell induces an
isomorphism of homotopy, modulo classes of filtration zero. This
proves the lemma.

Note that in this case the classes in the coker are not just Z,-
summands of 7,.(B(N’)) but include classes which are a part of the
essential bo homotopy of B(N). They still are classes of Adams
filtration zero.

We have completed the proof of the Theorem 5.11. What remains
to be proved in the main theorem is “edge” result in part (¢) and
to consider the map in homotopy induced by bo — Ibo A bo — >*B(1) A
bo. This second part is described completely in [10]. An easy way
to see those results from our perspective is to again consider the
diagram.

Bo ——s S1B(1) A bo

I ]

XTZ4X

The fact that & factors through X — 285° A X allows one to show
that k.(a*) = jo(a**. This implies that in %' the homotopy in
7,;(bo) increases in Adams filtration by ¢ where j = 2° X odd. From
this calculation parts a, and b follow immediately.

To establish the “edge theorem” we first note.

PROPOSITION 5.15. If X is a space whose cohomology s free
over A, then E3'(X, bo, ) = Ext}'(H*(X), Z,).

Proof. Let A, be a space such that H*(A4,) = A,. Then bo A
A, = K(Z, 0). Hence the bo resolution for A, is just an Adams

resolution.
We can filter H*(S,) by letting
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F, = gim A, ® HYS) .

Then F,/F,_, is as follows.

FyF, = 3*M/(1)

FJ/F,_ ., =0 1=4,5,6,89 10,12, 13, 14
F?/Fe = 27(141 ®A0 Zz)

F\F, = 3"(A Q. Z,) D 3"MQ1) .

Using this filtration we can get an estimate on S, A M,. First
observe that S, is 1l-connected. The first portion of H*(S, A M,)
is M(1)® M1 ® M,1) ® M,1) Q H*(M,) and a simple calculation
shows that this module is stably A,-isomorphic to H*(S* A M,).
Hence for s=4 there is a function of ¢, f(t), such that E;*(M,, bo, ) =
0 for s > f(t) if E;—*"*S, A M,, bo, #) = 0. This last expression is
valid if Exty*%A, Z,) =0 and E;*"*M,, bo, ) = 0. The first
occurs for 6s > ¢ + 12. (This follows easily from a calculation of
Ext, (A, Z,.) Using this estimate inductively we see that if 6s >
t + 12 then 6(s — 4) > (t — 28) + 12. This implies E3 (M,, bo, 7) = 0
if 6s >t + 12.

A much sharper estimate is available. Indeed the theorem is
true for 6s > ¢ + 6 but the proof requires a much sharper analysis
of the resolution. Our goal was only to establish the “1/5 line”.

6. w-periodicity. There are a variety of ways to define v,
compositions in homotopy. The followihg is equivalent and is con-
venient for our purposes. Let Y be the stable complex M, A CP:.
It is easy to see that there is a map f:3°Y —Y of filtration 1 such
that H*(Y U, C3?Y) is the subalgebra of A generated by S¢' and
Sq. There are four choices of v, and we use any one and call the
map f, v,.. Let v:S’— X be a class. Then there are potentially
four maps

(6.1.1) iy 2L, Sf~—T—>X where p, is of degree 1.

(6.1.2) 25‘2—p2—>25M25—L>X where p, is of degree 1 and ~f is an
extension of v (if it exists).

(6.1.3) Zf“lY—z—)—»E"—zP;—T;X where P; = RP*S' and p, and ~*
3
are analogously defined.

3
(6.1.4) Y LY.
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If (6.1.1) exists we call the map v!. The first always exists but
may be inessential. The others sometime exist and, when they exist,
are sometimes essential. If a map of type ¢ exists and the composite

L
Fimsrsay D, pioeiy s X
74

is essential for all I for every ~% then we say that v is v,-periodic
of type <.

To illustrate this we give the following examples. 6.2(a) If 7
generates 7,(S°) then 7 is v,-periodic of type 2, »} is inessential and
7i, 4 =3 and 4 do not exist.

(b) If v generates 7,(S°) then v is w,-periodic of type 3 but not
of type 1.

(¢) The generator of the image of J in the 8k — 1 stem is v,-
periodic of type 1. The element of order 2 in the image of J in the
8%k — 1 stem is v,-periodic of type 2.

THEOREM 6.3. The only homotopy elements in w, (S°) which are
v,-periodic of amy type are those classes discribed in E™YS° bo, )
E“Y(8°, bo, 7).

Note that other classes may have finite v,-compositions but this
theorem describes all the those which admit v,-composition of all
order.

Proof. Let v be a homotopy class of bo filtration s=2. This gives
Si— 8, s =2. Now consider the composite if possible X —**Y —

V.
Zf“"*"Y—TgSS. The filtration of vy, is 1 and hence by 1.1.(¢), ther;

is a commutative diagram
iy I g 8 A bo
AN /
N &
28, . N\ bo

where d, is the connecting map in the spectral sequence. Thus
Yiv, — pf: 2Y — S, is a map which when projected to S° re-
presents viv,. But viv, — pf lifts to S,.,;. Clearly the edge theorem
of 1.1.(c) or just the fact that S, is 8s — 1 connected guarantees
that some w,-iterate will lie in a zero group. This gives the
theorem.

REMARK. To connect this result with other results about v,-
periodicity we give the following result.
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PROPOSITION 6.4. There 1s commutative diagram

»Y -2 Y

N

SOM, o M,

where the maps p, are degree 1 and 8c* 1s the coextension over X*M
of the extension of Z“OMQ,B—;S3.
g

The result is an easy -calculation using the Adams spectral
sequence because there are no classes of filtration 4 earlier than
hihs.
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