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An %-dimensional stochastic process ξ(t) is observed. It
is known that ζ(t) has the statistics of an ^-dimensional
Brownian motion with any one of possibly n+1 drifts
λ0, , λn (λi are given ^-vectors). We observe the process
at a running cost, per unit time, given by cτ when the drift
is λi9 and after some (stopping) time τ make a decision
which hypothesis to accept; the hypothesis Hj means ac-
cepting the drift λj; the drift changes in time in accordance
with a Markov process with n-\-l states and a given trans-
ition probability matrix. The problem of finding the opti-
mal stopping time and optimal final decision leads to a
variational inequality for a degenerate elliptic operator. In
this paper we study this variational inequality and the cor-
responding free boundary. We also consider, by purely
probabilistic methods, the case where ς(t) is ώ-dimensional,
kφ n. The outline of the main results is given at the end
of §2.

1Φ The sequential testing problem* Let qi}j(O ^ i, j ^ n) be
real numbers such that qttj >̂ 0 if i Φ j , qiΛ ^ 0, and Σ"= o Qij — 0
for 0 ^ i ^ n. In a probability space (Ω, J^, P) we are given a
Markov process θ(t) = θ(t, w) taking values 0,1, , n and having
the infinitesimal matrix (?<,,-). We are also given an ^-dimensional
Brownian motion w(t) (with w(0) = 0) independent of the process
0(i). Let λ0, λ1? "'9Xn be ^-dimensional vectors which span Rn,
that is

(1.1) λj — λo, λ2 — λ0, , Xn — λ0 are linearly independent .

Consider the process ξ(t) in Rn given by

(1.2) dξ(t) - dw(t) + Σ IiOiwXjdt

that is, on the set θ(t, ώ) = j dξ(t, ω) = dw(t, ω) + Xάdt. We set

When θ(t, ώ) = j we say that the hypothesis Hά is satisfied (at
time t). We shall be concerned with the problem of deciding which
hypothesis to accept at a minimal cost. We follow Bayes' formula-
tion in setting up the problem:
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The observed process is £(£). We are given an a priori proba-
bility π for 0(0), that is, we are given

(1.3) π = (7ΓO, πlf , π j , π, ^ 0 , Σiπi = l

and make the initial assumption that 0(0) = j with probability πό.
This determines a probability Pπ on the space of paths (0(ί),
with w(0) = 0, and

(1.4) P*(0(O) - j) = π, , O ^ i ^ n .

We shall denote the expectation with respect to Pπ by Eπ. The
running cost (per unit time) of the observation of ζ(t) is a given
positive number c5 if θ(f) = i We observe the process f (t) for an
amount of time τ, where τ is a stopping time with respect to &\\
the incurred cost is then

Eπ β o ' f(β(t))dt 1 , where /(i) = c, (0 ̂  j ^ n) .

At the time t = r we make a terminal decision cZ(ω) as to which
hypothesis to accept; d(ω) = i means accepting the hypothesis fl"i#

The variable d(ω) is taken to be &*τ measurable.
Set

(1.5) W(θ, d) = at if d = ί, θ Φ % (α, > 0) ,

i.e., at is the cost for erroneously accepting the hypothesis H^
The cost of the terminal decision is

E*[W(β{τ, ω),

and the total cost for the decision δ = (τ, d) is

Jπ(δ) = J

More generally, introducing a discount factor a, a ^> 0, the total
cost becomes

(1.6) Jκ(δ) - E^e-atf{θ{t))dt + e-«τW(θ(τ, ω\

The problem is to study the least cost function

(1.7) V{π) = inf Jκ{δ)
i

and to find an optimal decision δ = (f, d), that is,

(1.8) Λ(3) =
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This problem is called a sequential testing problem ofn + 1 simple
hypotheses Ho, Hl9 - —, Hn. The case where

θ does not depend on t, that is, qitj — 0 for

0 ^ i, j ^ n; ct — c > 0 for <^ i <. n

will be called the special case; more refined results will be proved
for this case.

The sequential testing problem in the special case with n = 2
has been studied in detail (see Shiryayev [15] and the references
given there). In the case of discrete times the problem (in the
special case) was studied by Wald [16], Chow and Robins [7], Shir-
yayev [14], Kiefer and Sacks [11] and others.

Analogously to the case n = 2 we introduce the a posteriori
probability process

π(t) = (7ro(t), π^ί), •• ,πΛ(ί))

where

Introducting the simplex in Rn+1

π = (π 0 , TΓi, , π n ) ; π , ^ 0 ,
i = l

it is clear that π{t) e Πn+1 for all t > 0. The process ττ(*) was studi-
ed by Shiryayev (see [13]) and by Anderson and Friedman [2]. It
is shown in these references that π(t) is a Markov process with
generator

Mu(ττ) = — Σ πtπΛ λ< — Σ

(1.10)
(\ V^ir \ o u\π) , v Λ •

and (in [2]) explicit formulas are given for ττy(ί) in terms of
In particular, when (1.9) holds,

(1.11) f j
zhh{t) = exp{(λ, - λ,) e(t) - | -

As in [2] [13; p. 167] we can express Jτ(δ) in terms of the pro-
cess π(t):

(1.12) Jx(δ) = S
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where h(π) = ΣΓ=o c^.
Set

Jπ(τ) = inf Jπ(δ) where (τ, d) = δ .

For a given τ the optimal d = d(ώ) is such that it minimizes
Σ ( l — πi(τ(ω)))aί. Consequently,

(1.13) Jκ(τ) = E

where

(1.14) flr(w) - min

The problem associated with (1.7), (1.8) thus reduces to the
problem associated with

(1.15) F(τr) = inf Jπ(τ)
τ

(where V(π) is the same as in (1.17)) and

(1.16) Jκ(τ) = V(π) ,

where τ, τ are stopping times with respect to

In the sequel we shall study the hypothesis testing problem in
its formulation (1.15), (1.16). For simplicity we shall also always
assume that a > 0; the results in case a = 0 are still valid, but re-
quire some changes in the proofs; we consider this case briefly in
§10.

2* The variational inequality* Let Πn+1 — int Πn+1.
As in [2], the function V(π) in Πn+1 can be characterized as the

bounded solution u of a certain system of differential in equalities:

Mu — an + h >̂ 0 a.e. in Πn+1,

(2.1) u(π)^h(π) in Π%+1 ,

(Mu — an + /&)(tt — #) = 0 a.e. in Πn
n+1

Such a system is called a variational inequality (for a general study
of variational inequalities see, for instance, [3] [9]).

We recall [2] that, because of (1.1), M is a nondegenerate el-
liptic operator (in n independent variables) in Πn+1. It degenerates
however on the boundary dΠn+1.

LEMMA 2.1. (a) If π = π(0) belongs to Πn+1 then π(t)eΠn+1 for
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all t > 0, and (b) if (1.9) holds and if πt = π^O) = 0 for some i,
then 7Γi(ί) = 0 for all t > 0.

The assertion (a) follows from the formula for πβ(t) given in
[2]. The assertion (b) follows from (1.11).

From (a) it follows that no boundary Dirichlet conditions are
needed to be given on dΠn+1 in order to solve the variational in-
equality (2.1). The solution of (2.1) can be constructed as follows
(cf. [2]):

For any δ > 0, ε > 0, let

(2.2) 77i+1 - {π e Πn+1, πt > δ for 0 ^ i ^ n)

and let aε(t) be a C°° function in t satisfying:

#(*) S 0, #'(«) ^ 0 βε(t) > 0 if t < 0 , ε I 0 ,

/9.(ί) > -o if t > 0 , ε I 0 .

Consider the elliptic problem

— Mu + au + βε{u — g) = h in Πδ

n+1 ,

u = φ on dΠ'i+1

where φ is any smooth function such that

(2.4) 0 ^ φ ^ g .

This problem has a unique solution i£ = uδ>ε. If ^(TΓ) were a func-
tion in W2}P, for any 2 ^ p < °o, then one can show, by standard
techniques for variational inequalities, that

(2.5) uδiZ > uδ uniformly as ε >0,

where uδ is the unique solution of the variational inequality

— Mu + ecu ^ h a.e. in Πδ

n+1 ,

u ^ g in Πδ

n+1 ,

(2.6) ( — Mu Λ- au — h)(u — g) = 0 a.e. in 77^+1 ,

u — φ on 377^+1 ,

w 6 T7^(/7;+1) , % e C(Πi+i)

In the present case g is not even continuously differentiate.
Since however it is the minimum of linear functions in the πif it is
convex. Thus, in terms of, say, πlf •••, πn,

(—tUL—) is negative semidefinite matrix ,

where d1g\dπiδπi is taken in the sense of distributions. By [4] it
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follows that

\uδyε\W2,~ίG) ^ C if GdΠδ

n+i

where C is a constant independent of δ, ε, and then (2.5) is still
valid. It follows that

(2.7)

We now take d -» 0 and deduce (as in [2]) that

(2.8) uδ > u uniformly in compact subsets of Πn+1

where u is a solution of the variational inequality (2.1); further
(by a probabilistic argument),

(2.9) u has a continuous extension into Πn+1 ,

and, by (2.7),

(2.10) ueW&(Πn+1).

The uniqueness of the solution u subject to the smoothness condi-
tions (2.9), (2.10) follows (as in [2]) by using Ito's formula.

We recall that u can also be obtained as follows:

(2.11) u = lim lim uδt£ .
ε_>0 δ->0

Let

S = {π e Πn+1; u{π) = g(π)} , C = {π e Πn+1; u(π) < g(π)} .

As in [2], V(π) defined by (1.15) coincides in Πn+1 with the solu-
tion u of (2.1), and an optimal stopping time τ (as in (1.16)) is
given by

(2.12) τ = hitting time of S by the process π(t) .

Thus the optimal strategy is to continue while π(t) is in C and to
stop when π(t) hits S. For this reason the set S is called the
stopping set and the set C is called the continuation set.

In the terminology of variational inequalities, S is called the
coincidence set, C is called the noncoincidence set, and g is called
the obstacle. The set

Γ = Πn+ι n dC @C - boundary of C)

is called the free boundary.
The purpose of this paper is to study the sets C, S or, equi-

valently, the free boundary Γ.
We shall denote by et the vertex
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(δi0, δίl9 , δin)

of Πn+1(0 £i£n).
In § 3 we prove that each vertex et has a /7w+1-neighborhood St

such that SiCiS. In §4 we prove some auxiliary results needed for
the following section.

In § 5 we study the set

(2.13) St = S Π {π 6 Πn+1; u{π) = α,(l - πτ)}

under the assumption that

qik = 0 for 0 ^ k ^ n .

Introducing the coordinates

(2.14) ys = —' (1 ^ j ^ n)
7Γ0

we prove that Γt = 77TO+1 n δS^ can be represented in the form

( 2 . 1 5 ) yt = ^ i d / i , , !/*_!, y < + 1 , •••,!/»)

where ψ»t is analytic.
In § 6 we specialize to the case (1.9) and prove that each Si is

a convex set and u(π) is a concave function.
In §§ 7, 8 we study the asymptotic behavior of the solution

when (1.9) holds and c—>0. It is shown that dSi lies within a δxc-
neighborhood of β< and outside a ^-neighborhood of et. Further,

(2.16) E*τ ~ ( Σ T ^ Λ o g l , i-Tc = {min \Xk - λ,I}"1

\ί=0 / C 2 &̂ i

where f is the optimal stopping time, and

(2.17) —u(cy) > u{y) (u(y) = w(7r))
c

where u(y) is the solution of a certain variational inequality; the
free boundary for u is also studied.

In § 9 we consider the behavior of the solution as c —> °o. The
case a = 0 is considered in § 10. Finally, in § 11, we extend some
of the results of the previous sections to the case where w(t) is
fc-dimensional, for any k; here the methods are purely probabilistic.

We would like to thank Professors J. Sacks and A. Shiryayev
for several helpful conversations.

3* S contains a neighborhood of the vertices* We always
denote by u(π) the solution of (2.1) (which satisfies (2.9), (2.10); re-
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call that u(π) = V(π) if π G Πn+1.
The operator Mu can be written in terms of the tangential

operators of Πn+1 (considered as a submanifold in Rn+1). Observe
that on Πn+1

and, consequently, the operator

Σ OCt

is tangential if and only if Σ?=o ®>i — 0. We introduce the tangential
operators

and the normal operator

Substituting

(3.1) -A- = - Σ (β*. - -~r)D^ + —^-TD
dπt »=i \ w + 1 / w + 1

into ilfu we discover that the coefficients of D2, DQmD vanish (as
indeed they should) and that Mu takes the form

(3.2) Mu = ~ Σ πjtlxt - Σ λ^πΛYλy - Σ XιπλDQiDQju

- Σ Σ Qt.jKiDosU .
j=zl i = Q

Another useful coordinate system is given by (2.14), i.e.,

(3.3) Vi = — (1 ^ i ^ n) .

(The role of π0 is incidental; one can similarly work with the co-
ordinates Vi = πjπj, 0 ^ i ^ n, i Φ j , for any fixed j.) It maps
77W+1 onto

Λί = ί» = (»i, •• , y j ; Vy^O for l ^ i ^ 7 ^ } .

It is easy to compute that
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(3.4) — =

and that in the ^/-coordinates Mu becomes (cf. [2])

Lu = — Σ A

(3.5)

+ Σ Σ (Qi.j — Qi.oVdVi-
ji i=o dyd

where y0 = 1 and

(3.6) Γ = l + l/i+ ••+»»,

(3.7) μtj = (λ, -Xo)<\--\) .

We shall need the following comparison lemma:

LEMMA 3.1. Suppose that u is a function satisfying the vari-
ational inequality (2.1) in a region Π c Πn+1 with g replaced by g.
If

g^g on Π ,

u^u on dfϊ Π Πn+1 ,

and u is uniformly continuous in Π, then u^tu in Π. Similarly,
if g ^ g on Π, u ^ u on dff n Πn+1, then u S u in Π.

Notice that we do not assume that u ^ u (or u ^ u) on dff Π
dΠn+1.

Proof The function u can be obtained as the limit of solutions
uδ of variational inequalities in Πδ

n+1f] ff (cf. (2.6)); the proof is the
same as for u. By a standard comparison theorem for variational
inequalities, uδ >̂ u. Taking δ -> 0, the assertion follows.

THEOREM 3.2. Assume that cό > a^j^ for 0 ^ j ^ n and some
i. Then there exists a Π^^-neighborhood St of et such that Si c S.

Proof. It suffices to prove the assertion for i = 0. The proof
is by comparison of v = u — g with a function z which vanishes in
an ^-neighborhood of y = 0. Notice that near y — 0

(3.8) g = αo(l - π0) - ^ (^+ +yn) .

Since M(l — πQ) = — Σ?=oϊio7Γί» ^ satisfies:
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(3.9)

—Lv + av ^ μt,

v ^ 0 ,

(—Lv + av — μx)v = 0

a.e., if yeRϊ, \y\^ # * , where iϋ* is sufficiently small and

n

We have to show that

(3.11) v(y) = 0 if y e Λ ί , | » | < Λ

for a sufficiently small i?.
Let (cf. [10])

-ΛΓ if R <r <R0,

0 if r < R

where 0 < # < l , N > 0, r = \y\. We compute that (3s/3r) < 0 if
R < r < Ro, so that 2J < 0. Also

z = ^ = 0 if r = Λ .
3r

If we show that

(3.12) j = - Lz + az satisfies y ^ μ1 (R < r < RQ)

and if also

(3.13) z(R0) ^ -K where ίΓ

then, by Lemma 3.1, z ^ v if 0 < r < i?0. This implies that 0 ^ v
if 0 < r < # , and (3.11) follows.

To establish (3.12), (3.13) we compute

«r
It follows that
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, — ^ CN

Thus it suffices to satisfy (using (3.10))

(3.14) -SAT

and

N
M=—^<1\.(3.15) -^—{Mθ -ΘM)-N<ζ~K

1 -— Θ

Choosing M sufficiently small so that

Mθ -ΘM ̂  1
1 -θ = 2

and taking N > 2K, (3.15) follows. Defining Ro by (3.14), the proof
is complete.

4* Auxiliary results*

DEFINITION. A point πeΠn+1 is said to belong to the ridge R
of the obstacle g if g is not W2>co in any neighborhood of π.

Thus, 7Γ = (π0, ---,πn)eR if and only if

a*(l — TΓi) = a3 (l — 7tβ) for some i Φ j .

The above definition is analogous to the definition used in elastic-
plastic torsion problems [6] where g is the distance function from
the boundary of the domain.

THEOREM 4.1. The ridge is contained in C.

Proof. Suppose π = (τr0, , πn) e R and, say,

aλ{l — TΓi) = α 2 ( l — π2) .

If ft e S then

T7ί n (Λ <τr ̂  — C\

F(u - o,(l - τr2)) = 0

at π, since u — at{\ — πt) ̂  0 in Πn+1 and tt(π) — α^l — TΓJ = 0, i =
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1, 2. Thus

F(a1π1 — a2π2) — 0 a t π .

But

)\a1π1 a2π2) —— )\a1π1 a2π2) — I
dy2 / \

a contradiction.

LEMMA 4.2. Assume that qiik — 0 for 0 ^ k ^ n and some i ^ 1.

(4.1)

Proof. It suffices to prove (4.1) for i = 1. In § 2 we may re-
place /7^+1 by any other sequence of domains which increase to
Πn+1 and the boundary values φ on dΠδ

n+1 by any continuous func-
tion φ satisfying 0 ^ φ S 9- We shall choose Πδ

n+ι so that in the
^/-coordinates it becomes

(4.2) Gδ = {y; δ < yi < yfor 1 ^ i ^ n[ .

Let

v = uδ — α x ( l — TΓi)

z= Yv

and choose 95 as follows:

uδ = 0 on 7/i = δ
Yuδ, on each face yι = d oτ yt — 1/δ (2 ^ ΐ ^ w), is a

(4.3) monotone increasing function of yx such that Yuδ ^ Yg,
and Γuδ = 0 at yx = δ, Yuδ = Γgf at ^ = 1/δ; Γuδ =
Γ̂ r on yx = 1/δ .

Then, on yx = δ

—^—(ϊ^ί) ^ 0 (since ^ = 0 on ^ = δ, uδ ^ 0 elsewhere) .
dyi

Also
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a,Y(l - πλ) = αj(l + y2 H \-yn)

so that

(4.4) <L_(αiΓ(l - π i )) = o .

Consequently

(4.5) - ^ - ^ 0 on y, = δ .

On ^ = δ or 7/; = 1/δ (2 ^ i ^ w) we have, by (4.3),

Using (4.4) we again get

(4.6) -^~ ^ 0 on yτ = δ or yt - — (2 g i ^ w) .

On /̂i = 1/δ, z = 0 by (4.3). Since # ^ 0 elsewhere, we obtain

(4.7) - f ^ ° o n 2Ί = ΊΓ

Denote by Ĉ  the set where ^ < g. Then, in Ĉ ,

It

Mv — av •= ~ Σ to ~ (^ίQi,i)πi + ^ « Ί ( 1 — πx) .
ί=0

Recalling that L^ = ikfi; where L is defined by (3.5), and substitut-
ing

dv __ 1 dz 1

3y, Γ 3 ^ Y2

d2v = 1 32^ 1 3 ^ 1 d z
= __ _ ^_ _ _ __ _χ

dyίdyj Y dy.dyj Y2 dVi Y2 dVj Y2 f

we find that

(4.8) LQz- az= - Σ (Ci - a.q^y, + aa^Y - yλ)

where

(4.9) LQz^ 1 Σ A ^ ^ - ^ - + Σ Σ (g,,, - g<fO»i)»i

+ Σ 9i,ol/<2
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Differentiating (4.8) with respect to y19 we obtain the following
equation for w — dz\dyx\

(4.10) Low + Σ Ailfc-I^- + Σ Σ (qiti ~ q^vdv* ~ - aw
dV i i i dy

From the maximum principle it then follows that w > 0 in Cδ pro-",
vided w ^ 0 on dC,. In view of (4.5)-(4.7), w ^ 0 on dCδ Π G> We
next show that

(4.11) w(y) ^ 0 if y e dCδ n (int G5) .

Indeed, since # e dCδ Π (int Ga),

(4.12) uδ = all - πt) , Fuδ = F(α,(l ~ TΓ,)) at gf,

for some i for which gr = α<(l — TΓJ at ^. Writing

we note that the first term on the right hand side vanishes by
(4.12), the third one vanishes by (4.4), and the middle one is equal
to

a* - — ( Y - yt) = ai i f i Φ l ,

= 0 if ΐ = 1 ,

we conclude that w(y) ^ 0.
It follows that

— [Y(uδ - αα(l - π,))] ̂  0 in Cδ; hence also in Gδ .

Taking δ -* 0, the assertion of the lemma follows.

REMARK. Recalling (3.4), we can rewrite the assertion of
Lemma 4.2 as follows:

(4.13) ( Doί - g πkDokJ[ Y{u - α,(l - π%))} ̂  0 .

If we replace the role of e0 by another vertex, say en9 the corre-
sponding differential inequality
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- all - πt))] ^ 0

(where Dnj = d/dπn — d/dπs) coincides with (4.13); thus we do not get
any new inequality.

5* The free boundary is analytic* We continue to use the y
coordinates (3.3).

Denote by <?* (0 ̂  i S n) the open components of Πn+1\R with
dGi 9 et and set

(5.1) st = snGif ct = cnGit

the definition of St is the same as in (2.13). Denote by Gif Sif Ct

the images of Gi9 Sif Ct respectively in the ^/-coordinates. Denote
by R the image of the ridge R in the ^/-coordinates. It is easy to
check that if y = (y0, , yn) e G< then there is a line segment

7 = {y; yά = yά if j Φ i, yt - β < yt ^ &} (β > 0)

which belongs to Gt and its left end point lies on R.
Suppose now that

(5.2) qί)k = 0 for 0 <; k ̂  n and some i ^ 1 .

By Lemma 4.2 we then deduce that if

(5.3) u(y)-g(y)<0, yeGt

then

(5.4) u(y*) — g(y*) < 0 for any ^ / * e τ .

Thus the open set Ct is connected to R. Since R belongs to C, by
Theorem 4.1 it follows that C€ is connected.

The previous argument involving (5.2), (5.3) shows also that
there exists a function ψt(yl9 , y^ yi+u •-, yj such that

(5.5) C, = {y 6 G^ ̂  < ^ ( ^ , ̂ -α, yi+u , yn)} .

We can thus state:

THEOREM 5.1. // (5.2) holds then Ci is connected and it is a
subgraph in the sense of (5.5).

We next prove that ψt is analytic:

THEOREM 5.2. If (5.2) holds then ψt is analytic. More precisely,

if
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Vi = ψi&U ' ' ' , Vi-l, Vi + lf ' ' ', Vn) f

then ψi is analytic at (yl9 , yt-l9 yi+l9 , yn). Thus the free
boundary in the interior of G* is analytic.

The proof of Theorem 5.2 given below is based on a method of
Alt [1].

Proof. It suffices to prove the theorem for i — n. Let yr =

(Vi, '' 9 l/*-i) a n d consider the function

ζ = αΛ(l - πJ - u

in

DPo = {β<yn< ψn(y'\ W - vΌ\ < po}.

Here y'o is a fixed point with positive coordinates, β < ψn(yΌ), and
îι(2/o) — /5, Po are sufficiently small so that DPo is contained in Cn.

We have ζ > 0 in D^, ζ = 0 on yw = ^»(/). By Lemma 4.2,

(5.6) T ^ < ° i n ^o

Consider the function

(5.7) 4^ dζ

k=l

in D^, where Σ # ! ^ 1 a n ( i ^ is a sufficiently large positive con-
stant to be determined later on. We have (cf. (4.8))

Loζ - αζ = Σ (ct - α»?i,»)2/< - αα%(Γ - yΛ) = k .

Differentiating with respect to j/ f c, first when k — n and then when
1 <; & <| % — 1, we get

dζ \ dζ „ dk _
r — I a ~~Z ^ c » >

where

^ dyn '
 ί = 1 ιn % dy% ^ dyn / 9τ/Λ 9^/,

( f) + Σft

= ± (μin - μtb)yti1 + ±xk
ί=i dyt

where \ik, %k are linear functions, and
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— = ck - anqk>n - aan .

Since ζ e Wϊ£f Mk is bounded and consequently,

(5.8) Lη Ξ L Λ + Σ μinVi-^- -aη=-Acn + B
i=i dyt

where B is bounded indepedenntly of the at and A.
We choose A sufficiently large so that

(5.9) Ly£-1 in DPo .

Now let p be any number < p0 (for instance p = po/2) and de-
fine

Dp = {β<yn< ψn(y'\ \y> - y'0\ < p) .

Denote by dDp the boundary of Z>̂  and set

Γp,σ = {yedDp; yn < ψn(y') - σ) ,

Γp>σ = {ye dDp; ψn(y') - σ < yn < ψn(y')} .

Define dDPQ,ΓPQiσ, ΓPo,σ similarly with respect to DPo.
For any sufficiently small σ > 0 we have, by (5.6),

(5.10) 1?>O in Γp,σUΓPtσ

provided A — A(σ) is sufficiently large. We claim that if σ is suf-
ficiently small depending on p, pQ then

(5.11) ) ? ^ 0 on ΓPta.

Indeed, suppose (5.11) is not true. Then there exists a point y* 6
ΓPtO such that η(y*) < 0.

Consider the function

η = y + y\v-v*\2 (T > 0 ) .

If 7 is sufficiently small then Lη < 0. Therefore, η cannot take
negative minimum in DPQ. But since ^(y*) < 0, η > 0 on ΓPQfO (by
(5.10)) and on yn = ψn(y), there must exist a point yefPQfO such
that η(y) < 0. Thus

f ^ - y*\* < 0 .
*=i dyk dyn

Recalling that -A(dζ/dyH) > 0, and that

-gj-OM on f,...
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(since ζ 6 Wh7 and Fζ = 0 on yn = irn(y')), we deduce that

(5.12) (p0 - pf ^ Cσ

where C is a constant independent of ρOf p, σ, A. Consequently,
if σ is sufficiently small so that (5.12) is not true then the inequal-
ity (5.11) is valid. It follows that ^ 0 on dDp. Applying the
maximum principle we conclude that η > 0 in Dp, i.e.,

(5.13) Σ α* — ~ A - ^ - > 0 in Dp .
^ dyk dyn

Denote by K the cone

w\<
A

The inequality (5.13) implies that if

v = ($', y») f yn = ψΛy')

then ζ > 0 in the cone K + y. Thus, if yn = φn(y') then

y$K+ y ,

i.e.,

or equivalently,

Interchanging y with ^ we deduce that

that is, τ/r% is Lipschitz continuous.
By a general result of Caffarelli [5] it then follows that ψn is

a C1 function and then (by Kinderlehrer and Nirenberg [12]) also
analytic.

REMARK. It is clear that Theorems 5.1, 5.2 extend to the case
where (5.2) holds with i = 0. Instead of using the coordinate trans-
formation (3.3), we take ys — πd/πJQ for 0 ^ j ^ n, j Φ j0 for any

io, io Φ o.

6* The special case (1*9)* In this section we obtain additional
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results in the special case when (1.9) holds. For any 0 ^ j ^ n, let

and denote by uό{π'ό) the solution of (2.1) corresponding to the pro-
blem with n hypotheses Hi9 0 ^ i ^ n, i Φ j .

THEOREM 6.1. Suppose qi7J = 0 for 0 ^ i, j ^ n. If π5 > 0,
π51 0 then

(6.1) u(π) > U^π'i) .

REMARK. Recall that boundary values for u were not prescrib-
ed (on dΠn+1); in fact, in Πn+1,

u(π) - inf Eπ[\Te-ath(π(t))dt + e-aτg(π(τ))~\ = V(π)

and, as shown in [2], the middle term is uniformly continuous in
Πn+1. This implies that u has a continuous extension into dΠn+1,
which is denoted again by u. What we have to prove is that this
extension, when restricted to πd = 0, coincides with %(ττ£).

Proof. If suffices to consider the case j = n. Let π' = π'n and
u(π') = iϊn(πi). We denote by r3 the exit time of π(t) from /7^+1.
We shall compare the cost functions

JΛτ) = E

where π(t) = (ίro(ί), •••, ίr»-i(t), *n(*)) i s t h e process ττ(ί) w i th τ?(0) =

(π', 0) and

gx(π) = m m {a*(l — TΓJ} .

Recall [2] t h a t

tt(τr) = mf Jπ>{τ)

where τ varies over all ^ r

t stopping times.
By Lemma 2.1, πn(t) = 0.
In what follows we shall use a model of the Markov process

associated with π(t) in which the probability is fixed, say P, and
the initial condition JΓ(O) = π varies; for each π, π(t) is the solution
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of the stochastic differential system associated with the generator
M, and the initial condition ττ(O) = π. Working with this model, we
can replace Eπ, Eτ' by E, and we shall compare Jπ(τ)f Jπr(τ) with
the same r. We have (see, for instance, [8]), for any T > 0,

(6.3) E[ sup \π(t) - π(t)\2] ^ Cτπ
2

n , Cτ constant .

By Lemma 2.1, for any η > 0,

(6.4) P[τδ <T]<v if τr(O) - (τr0, , πn) , τr% > 0

provided δ is sufficiently small (depending on ΎJ9 πn).
Next, by Lemma 2.1 and (6.3),

(6.5) E\g{π(t)) - g1(π(t))I £ Cτπn if 0 < ί ^ Γ .

Using (6.3)-(6.5) we find that

I J c(r) - JAτ)\ ^ CCΓτru + Ce~aT + C^

if δ is sufficiently small, depending on η. Recalling (6.2) we get

\u(π) - ffi(π')| ^ CCτπn + Ce~aT + C^ .

Taking δ —> 0 and ssing (2.8), we obtain

I u(π) ~ u{πr) \ ̂  CCτπn + Cβ-α71 + Crj .

Taking πn —> 0 we conclude that

lim sup \u(π) - u{πr)\ ^ Ce~aT + Cη .

Taking η~>0, T~> ^ the assertion (6.1) follows.

THEOREM 6.2. // (1.9) holds then each set S, is a convex set
and the function u(π) is concave.

The proof is analogous to that for the discrete case [16].

Proof. Let π\ π2 belong to Πn+1 and set

π = λπ 1 + (1 - X)π2 (0 < λ < 1) .

We can write (1.6) in the form

(6.6) Jr(ΰ) - Σ ntE'lcVe^'dt + e^W(θ(ω), d(ω)) Ί ,
0 L JO J

where Ei = Er for π — et. Writing this relation for a specific δ =
(r(α>), d(ω)) and TΓ — π1, π — π2, and multiplying the first relation by
λ and the second one by (1 — λ) we obtain, upon adding these re-
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lations,

n

λjJπlyθ) t \1 — λ>)Jπ2\0) — 2

(6 Ό * . =

here ττ<, π?, π* are the ίth coodinates of π1, π2, π respectively and
the expression [•••] is the same as in (6.6).

Suppose now that π1 and π2 belong to S^ Then

It follows from (6.7) that

Thus π e Sz and, consequently, Ŝ  is a convex set.
Next, (6.7) gives

inf J-(δ) ̂  λ inf Jπl(δ) + (1 - λ) inf Jr2(δ) ,
δ δ δ

i.e.,

+ (1 - λ)π2) = u(π) ^ Xu{πλ) + (1 - X)u(π2) ,

so that u(π) is concave.

REMARK 1. From Theorems 6.2, 5.2, 3.2 we deduce that each St

is a convex domain containing a //^-neighborhood of β4 and dStΓϊ
ΠnΛl is an analytic manifold.

REMARK 2. For any numbers aitk(0 S ί ^ n, 1 ̂  k ̂  I) the
equations

Σ

hold if and only if

Since also ΣίU^i = 1, it follows that the mapping (3.3) maps planes
onto planes and lines onto lines. It also maps segments onto seg-
ments. It follows, in particular, that

(6.8) (3.3) maps convex sets onto convex sets .

Consequently, by Theorem 6.2, the image St(X ^ i ^ n)ίn the y-space
of the coincidence set St (in the π-space) is a convex set.
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7* Asymptotic estimates for c —> 0* For any y > 0 set

(7.1) N} = {πeΠn+1; 1 - 7 ^ π, < 1} , Nr = U ΛΓ; .
ΐ0

THEOREM 7.1. ^.ss^mβ that (1.9) holds. Then there exist posi-
tive constants δlf δ2 independent of c, a, such that for all c suf-
ficiently small,

(7.2)

Proof. Set

(7.3) r -

Using (3.2) and the relation Σ?=i?*,i = — ?t,o we find that (for
general qiti)

(7.4) Λfζlog r) = -
2r2

Σ V (\ —
i=l fc=o

2 1 A

Since

and since

Σ Σ (λ* — λ̂ TΓ̂ fc = 0 , by symmetry ,

Σ (λ*i "~ λo)2Ti7Γo
ί = l

we obtain upon recalling (1.1), that

(7.5) -g0* ~ Kxπ
2

Q ^ M(log r) ^ -

Σ ( λ , -

= max?<i0) ,\qQ,o\πQ/r

where iΓ^ iί2 are positive constants depending only on the λ<.
To prove the second part of (7.2), consider the function, in

Π = Πn+1Π{r < l/(n + 1)},

r if O ^ r ^ J Ϊ ,

jcδlogr + A ~ r if R < r <>
n + 1

where A, R, δ are positive constants. We choose A, R asjfunctions
of δ so that v becomes C1 at r = i2, i.e.,

— - 1 = α 0 , cδlogR + A~ R = a0RR

δ is a positive constant (independent of c) to be determined. Thus
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(7.6) R = — ^ _ ( R < —-—if c is sufficiently small) ,
α0 + 1 V n + 1 f

(7.7) A = cδ + cδ log α°"t * .
cδ

Notice that 77 c Gx. The condition

(7.8)

is satisfied if

cδ log — ^ — + A - — ί — < 0 ,
n + 1 w + 1

i.e., (in view of (7.7), if c is sufficiently small. We also easily find
that

(7.9) v ^ cδ log(α0 + 1) .

Using (7.5), (7.7), (7.9) and the conditions (1.9), we find that,
if R < r < l/(n + 1),

Mv - av ^ -Kt — acδ log(α0 + 1) > - c
(n + I)2

provided δ is sufficiently small (independently of c). We also have

v < aor = g if R < r < n + 1

Thus, we can apply Lemma 3.1 with u — v and conclude that v ^ u
in Π. Since v < g if r > R, the same is true for u. Thus S Π Go

is contained in iV .̂ Similarly one can prove that S Π Gt is contain-
ed in Nδc for any ί ^ 1.

To prove the first part of (7.2), let

wo(r) =

This function is C1 at ?• = Ro if

αor if 0 ^ r ^ i?0 ,

cδ log r + Λ if Ro < r ^ 1 .

AQ - cδ + cδ log 5i .

Using (7.5) and (1.9) we get, for Ro < r < w/(w + 1,)
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if δ is sufficiently large (independently of c).
Similarly, we define functions wt for each 1 ^ i S n and take

(7.10) w — min wt .

Note that if r = %/(% + 1) then certainly w < w0. Thus, if w = wQ

then r < n/(n + 1) and, consequently,

Mw0 — awQ < —c if further r > Ro .

The corresponding result is true for each wτ.

It follows that outside the (cδ)-neighborhoods of the vertices eίf

Mw — aw < —c

where Mw is taken in the distribution sense.
We can now apply Lemma 3.1 (whose proof extends, by appro-

ximation, to the case where u is only Lipschitz continuous and Mu
is taken in the distribution sense). It follows that u ^ w, and the
first part of (7.2) is established.

REMARK 1. The proof of the second part of (7.2) extends to
the case where, for some i,

\Qi,i\ ^ (n + l)max(g f t f l-α)

it gives the relation

SπG.d Nhc .

REMARK 2. From the proof of the first part of (7.2) we see
that the function

- l o g - (r = Σ ^ , e > 0

satisfies MW0 ^ — A iί ε < r < n/(n + 1), where A is a positive con-
stant independent of ε. Define Wt in a similar manner with re-
spect to the vertex ei9 and set

1

W — — min Wi .

Then MW^ - 1 in

Nε - Π%+ι\N. .
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Also W = 0 on 3Nε Π Πn+1. Denoting by τε the hitting time of Nε

by the process π(t) it follows, by comparison, that

E'τ. ^ W(π) .

Thus

(7.11) Eπτε ^ A, log i - for all π e Πn+1 .
ε

In the following section we shall obtain a more precise result as

REMARK 3. From Theorem 7.1 it follows that

(7.12) u(π) ̂  A2c

for all c sufficiently small, where A2 is a constant independent of c.
In the following section we shall obtain a more precise result as
c->0.

8* Asymptotic estimates for c —» 0 (continued)*

THEOREM 8.1. Suppose (1.9) holds. Then, for any πeΠn+1,

(8.1) E*τt = fΣ y^i W — + of flog-^Y'2), —7, = {min|λ, - λ, I}"1

as ε —> 0.
The analogous result for discrete processes is given, for instance,

in Kiefer and Sacks [10].

Proof. Set τ — τε. Then τ is the first time t such that

max 7Γj(t) = 1 — ε .

Using (1.11), the last inequality becomes

m a x "ji + ̂ j — β f c 3 lA-' l j l > — l — ε ,
ΰ

or

(Q O\ TΠi-n m e i Y O^-XA) »ζ{t)—U2{\λk\
2— \λ«\2) , / ^ c

yo./ίjj i i i i i i iiictΛ. κ> j j — \JO

where C is a random variable, Bx^ C ̂  ^ 2 , and 5A, -B2 are positive
constants independent of ε (but depending on the initial point π.
Taking the logarithm on both sides of (8.2) we conclude that
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(8.3) min max j(λfc - λ,) £(τ) - -^(|λ fc |
2 - \X3 \

2)τ\ = - l o g - 1 + 0(1) .

Recalling that

(8.4) Eπτ= _

we proceed to evaluate Eιτ for a fixed I. With respect to the pro-
bability P\

(8.5) ξ{t) = w(t) + Xtt a.s.

Thus, the stopping time r is the hitting time of some region Q by
the process w(t).

We claim that for any hitting time τ of a region Q,

(8.6) Ex I w(τ)\2 = 2n Exτ + \ x \2 .

Indeed, if Qc = Rn\Q is a bounded open set then, since both sides of

(8.6) are harmonic functions in Qc taking the same boundary values

\x\2 on dQ% they must agree in Qc. If Qc is unbounded then (8.6)

follows by approximating Qc by bounded open sets.

From (8.6) applied with x = 0 it follows that

l o g i j (Co constant)

where (7.11) was used.
Combining (8.3) with (8.5) and using (8.7), we find that

(8.8) min max \(Xk - X3-)-Xi - — (|λ*|2 - \X3-\2)\E1T
ϋύό^n kΦj K 2 >

= - log i- + 0(1) + θ((logi-)V 2) .

Next, one easily checks that

max Γ-— |λ* - λz|
2Ίif j = I

kΦi L 2 J

m a x ) yλijζ λij) * λij ~~z~ \l ̂ k I I Xι) I* "~" 4 \" Ί Xj)' λ>ι — \l Xι I Xj )

= _ | χt — χs |
2 if j φ I .

Using this in (8.8), we obtain

Γ— min|λ f c - λ
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recalling (8.4), the assertion (8.1) follows.
We wish to study the behavior of the solution u{π) in a neigh-

borhood of a vertex βέ as c —> 0. It suffices to take ί = 0. It will
be convenient to use the coordinates (3.3). We also set

u(y) = u(π) , \y\ = yγΛ Yyn ,

(8.9) Lu = — Σ μ d2%

2 ί.ί=i l J * 3 dyidy3-

T h e funct ion u(?/) satisfies t h e v a r i a t i o n a l inequal i ty , in 0 ^ \y\ < δ0,

L i_ ^ du __ a u < 0

(8.10) u.

)( *ψ) = 0
Consider the variational inequality in Ri;

L o u — an + 1 ^ 0 ,

(8.11) u^aQ\y\,

(LQu — an + ϊ)(u — ao\y\\) = 0 ,

subject to the growth condition

(8.12) u(y) = 0(\y\) a s \y\

THEOREM 8.2. Let (1.9) hold. Then there exists a unique solu-
tion u(y) of (8.11), (8.12); further, 0 <; u{y) ^ C for some constant
C, and

(8.13) ^ ^ >u(y) as c >0,
c

uniformly in y in compact subsets of int Ri.

Proof For any A > 0 let uA be the solution of the variational
inequality, in \y\ < A,

LouA — auA + 1 ^ 0 ,

UA < ao\y\ ,
(8.14) '

(LouA - auA + ί)(uA - ao\y\) = 0 ,

uA = 0 on 17/1 = A .

It is easily seen that
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uA ^ 0 , uA{y)] if A] .

It follows that

(8.15) U(y) = \imuA(y)

exists and it is a solution of the variational inequality (8.11).
We can represent uA(y) in the form

(8.16) uA(y) = inf Jy,A{τ) >
τ

(8.17) J,,Λ{τ) = Ej^ e-atdt + aa\y{τ)\e-aτIτ<

where y(t) satisfies

(8.8) dy(t) = σ(y(t))άw(t) , yφ) = y (yeintΛ+) ,

for some w-dimensional Brownian motion w(t), and

σ = (σίj) , σίj = vidyt , Σ ^ A ^ * = {*& »a = ^ t

r̂ 4 is the exit time of y(t) from the set \y\ <L A.
We claim that for all 1 < A < °o,

(8.19) j^Dr*1^] ^ -^-for some constants λ > 1 , C > 0 .
-A*

Indeed, by comparison

E,[e-*'A] ^ W(y)

provided

L0W-aW^0 for | » | < A ,

^ l on \y\=A.

Taking

where Co is a constant independent of A and λ > 1, λ — 1 sufficiently
small, the assertion (8.19) follows.

Taking τ = r 4 in (8.17) and using (8.19) and (8.16), (8.15) we
conclude that

(8.20) u(y) ^ C (C positive constant) .

Using (8.10) we find that the function
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c

satisfies the variational inequality, in 0 < y < δo/c,

Lawc + - c-— Σ μ.iVύli - ^ - ocwc + 1 ^ 0 ,
1 + c\ y I *.i=i 3j/,

(8.21)

(LOW. + - V - Σ AΛMJ, 4 ^ - awe + 1)(wc - , " " * ' . ) = 0

Hence we can write

(8.22) w.(y) = inf J;piί(τ)

where

o

where /̂β(t) is the solution of the stochastic system

(8.24) dyc(t) = σ(yc(t))dw(t) + bc(t)dt , yβ(0) = 2/ ,

the matrix σ(y) is defined above,

bc = (6M) , δβf< = C . Σ μaViVi ,
1 + c\y\ 3=1

rA = τA Λτf, τA is the exit time of yc(t) from the set [ y | ^ A. Notice
that r̂ 4 is a stopping time with respect to the o -fields σ(w(s),
0 ^ s ^ t), ί ^ 0; here A is any fixed positive number <£ δo/c.

Analogously to (8.22), (8.23) we can write

(8.25) u(y) = inf Jy,A(τ)
τ

where

τ e~atdt +

(8.26)
o

By standard arguments, for any large T > 0 and small η > 0,

(8.27) tfΛsuplif.W-irtt)!1]^?1 if c£
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Next, the proof of (8.19) shows also that

AλEy[e-«τc] ^ C for some λ > 1 , C > 0

provided cA ^ 1/C* where C* is a suitably large positive constant
(independent of c, A). Hence

AλEy[e-a~τA] ^ C provided cA ^ - ί - .

It follows that

(8.29) Ey[e-a~τA} <V (if c ^ - i - )

provided A is sufficiently large.
Note that

\y(τ)\^A, \yc{τ)\£A if τ £ τκ .

Now fix .A such that (8.29) holds and then fix T sufficiently large
(depending on A but not on c) such that

\yc{τ)\ - | y « ( r ) l <ff if τ ^ F ^ ,

(8.30) + ! i

Using (8.27), (8.29), (8.30) and (8.20), and recalling also (by
(7.12)) that

we deduce from (8.23), (8.26) that

(8.31) \JΆ,y(τ) - JyM)\ ^ CV

provided c ^ c*(i], A); c* and C are independent of τ and C is inde-
pendent of c, A. Recalling (8.22), (8.25), we get

(8.32) \wc(y) -u(y)\ ^ Cη ,

and the assertion (8.13) follows.

It remains to prove that any solution u(y) of (8.11), (8.12) must
coincide with u. From (8.19) we conclude that

(8.33) Ey[\U(y(τA))\e-^A] > 0 if A

Using (8.33) we can now repeat the argument which gave (8.32),

with wc(y) replaced by w(y). We thus deduce that
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\%(y) - u(y)\ ̂  Cη for and η > 0

hence u — u.
From Remark 2 at the end of § 6 we have that the component

of the coincidence set of wc(y) which contains y = 0 in convex. We
also have:

THEOREM 8.3. The coincidence set S of u(y) is a convex set.

By Caffarelli [5] it then follows that the free boundary dSn
intRi is analytic.

Proof. It is easy to check that if y^πhγ (3.3) then cy<->πc =
(πl, •••, πc

n) where

(8.34) τr;= ** - , πl = c ^
7Γ + c( l 7Γ)

^ ( l ^ i ^ Λ ) .

τr0 + c(l — π0)

Setting u(π) = u(y), u(π) — u(y) we then have, by Theorem 8.2,

(8.35) ^ ^ > u{π) as c > 0 .
c

Set π = 7Γ — e0, πc = πc — e0. Then, as easily checked,

(8.36) jf = — — 2 — 7Γ
1 + (1 - c)ττ0

and

(8.37) 7Γ = πc

c + (c- l)πc

0

where

π = (τf0, , πn) , πc = (τfo
c, , πe

n) .

Now, by the concavity of u(π) established in Theorem 6.2, for

any two points π9 ft and 0 < λ < 1,

(8.38) — u(Xϊcc + (1 - λ)S) ^ (λ^(#c #

where π = π — e0, π = π — e0 and %(S) = M(TΓ) for any π. We can

write

(8.39) λ# c + (1 - λ)^ c = Ίtc , S = if - β0 ,

where, by (8.37),
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(8.40) £ X7ζC + j l "" λ ) 7 r C — .
c + (c — l)(λτrS + (1 — λ)π0)

The point 7f depends on c; as c —> 0

λ 1 - λ

7Γ = 7Γ — β 0 ,

as seen using (8.36).
Using (8.35) we see that the right hand of (8.38) converges to

Xu(π) + (1 — X)u(π) as c > 0 .

As for the left hand side, using (8.39)-(8.41) we find that it con-
verges to U(π)y where u{π) = u(π) for any π. Hence

(8.42) Xu(π) + (1 - X)uφ) ^ u{π)

where π is the same linear combination of π, π as π is of π, π in
(8.41). As X varies from 0 to 1, the points π fill the entire interval
connecting if to ί.

For the obstacle of u we have equality in (8.42) (since it is a
linear function). It follows that if π and π are in the coincidence
set of u, then so is the entire interval connecting them.

Since the coincidence set is convex in the τr-space, it is also
convex in the τ/-space.

We denote by C the continuation set for u.

LEMMA 8.4. Suppose (1.9) holds and

(8.43) μl3 - 0 for 2 ^ j ^ n .

Then

(8.44) —^—(u(y) — ao\y\)<O in C.

Proof. Denote by uA the solution of (8.14) subject to a dif-
ferent boundary condition, namely,

(8.45) uA = 0(A) .

Representing uA as a cost function and using (8.27), we find that

uA{y) - uA{y) > 0 if A • CXD .



SEQUENTIAL TESTING OF SEVERAL SIMPLE HYPOTHESES 81

Hence

MA(y) > u(y) if A • oo .

N e x t , suppose we replace t h e domain \y\ < A by t h e domain

(8.46) {y eR+, 0 < y% < A for 1 ^ i £ n}

and denote by u\ the solution of the variational inequality (8.14) in
(8.46) subject to boundary condition (8.45). Then again we have

(8.47) u%y) > u(y) if A > oo .

(This follows, for instance, by working throughout the proof of
Theorem 8.2 with the domains (8.46) instead of the domains \y\ < A.)

Denote by uδ>A(y) (0 < δ < A) the solution of the variational in-
equality (8.14) in the domain

(8.48) {y e S+, δ < y< < A for 1 ^ i rg n} ,

subject to boundary conditions

(8.49) uUv) = 0(A) .

Then, for each fixed A, we clearly have

(8.50) uUv) >ui(y) if δ >0.

Set

(8.51) v = uδ>A - aQ\y\ .

We choose the boundary conditions in (8.49) such that v ^ 0 and

v = 0 on yλ = δ ,

(8.52) vVl ^ 0 on yt = δ and on yi = A (2 ^ i ^ n) ,

v = — C*A on y1 = A (C* positive constant) .

Consider the penalized problem corresponding to the variational
inequality for v, namely,

(8.53) Lovε — avε — βε(vε) + 1 — aao\y\ = 0

(where βε is as in (2.3) and βε(0) = 1). Using (8.43) and the condi-
tion vε — 0 on y± = δ, we find that

(8.54) i"u-|^- = /3.(0) + α 0 | » | - l > 0 if ^ = 5,

and similarly
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(8 .55) μn^rt= -aC*A + βε(-C*A) + aϋ\y\ - l < 0 i f Vl = A
dyl

provided C* is sufficiently large (independently of A).
Differentiating (8.53) with respect to yx and setting z — dv£/dy19

we get

Loz — az - β[(v)z - aa0 = 0 .

It follows that z cannot take a positive maximum at an interior
point. Furthermore, from (8.54), (8.55) we deduce that z cannot take
a maximum on the parts y1 = δ, y1 = A of the boundary. Since, by
(8.52) z ^ 0 in the remaining parts of the boundary, we conclude
that

z(y) < 0 in the domain (8.48) .

Taking ε-> 0 we get

5 (w
dyx dyλ

Taking δ -> 0 and using (8.50), and then letting A —> oo and using
(8.47), the assertion (8.44) follows.

THEOREM 8.5. Suppose (1.9) holds. Then the stopping set S of
u contains an (int Ri)-neίghborhood of the origin. If

(8.56) μik = 0 for some i and all k Φ i

then the free boundary Γ = dS Π (int 22+) o/ ffi cαw δβ represented in
the form

(8-57) yi = <Pi(ylf , y^u yi+l9 - - , yn)

where φt is analytic.

The proof of the first part is the same as in the case of
Theorem 3.2. To prove the second part, say for k — 1, we use
Lemma 8.4 and proceed as in § 5.

REMARK. Denote by Sc the connected component of the coinci-
dence set of wc(y) = u(cy)/c which contains y = 0. Introduce the
free boundaries

Γc = dSe Π (int 22+) , f = 3§ Π (int R+)

where S is the coincidence set for u. The sets Se, S are contained
in \y\ < RQ for some RQ > 0. Introduce polar coordinates (\y\, θ) =
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(\v\t θu m"> 0»-i) in Hi a n ( i a truncated convex cone

K={y;0< \y\ ^RQ,θeGQ}

Go is such that dK/{0} is contained in intiϋj. Since Sc and S are
convex sets we can represent Γe, f in the form

(8.58) Γc:\y\ = p e ( θ ) ; Γ : \ y \

From Theorem 3.2 we deduce that, for any ε > 0 ,

(8.59) I wc(y) - u(y) | < ε if yeKδ, cS c(e, δ) ,

where i£3 is a ^-neighborhood of i ί intersected with intiϋ+ S > 0.
We claim that

(8.60) \ρM-β(θ)\<C^ if θeG0;

this gives a rate of convergence of the free boundary of u(cy)]c to
that of u(y).

To prove (8.60) note first that

Kδ Π § contains Sc ε = {Kδ Π Sc minus a Cε1/2-neighborhood of
( 8 6 1 ) ' κnsc].

Indeed, if y$KδnS then (cf. [5])

sup u > ε

where B is a ball with center y and radius Cεm; hence, by (8.59),
supβ wc > 0, i.e., y$ SC)£.

Next pjβ) is uniformly Lipschitz in θ for (\y\, θ) in Kδ/2 and
small c, since Kδ Π Sc is convex and contains a fixed ^-neighborhood
of y = 0. Also p(0) is Lipschitz in ί. These facts together with
(8.61) and its counterpart with S, Sc interchanged, give the asser-
tion (8.60) with a suitable C.

9* Asymptotic estimates when c—> oo# Define, for any ε > 0,

(9.1) Dε = {ε-neighborhood of the ridge} Π Πn+1 .

THEOREM 9.1. Suppose that (1.9) holds and c ;> aa^Q <^ i ^ n).
Then there exist positive constants B, c* independent of a, such
that, ifc> c*,

(9.2) C is contained in DB/C .

Thus

(9.3) u(π) — g(π) outside the B/c-neighborhood of the ridge .
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Proof. Suppose π° = « πj, , πl) is in GQ and dist.(ττ°, R) =
B/c. Let

w(π) = — <5c|τr — π°|2 + αo(l — ττ0)

where π = (TΓ^ , τrΛ), τr° = (πl, , π1!). Clearly w lies below the
obstacle # in Go. Since

dist.(τr°, G<) > — (i ̂  1) ,
c

in each G t w decreases a t a ra te

:> δc\ π — τr° I — α0 ̂  Sδ — α0 > Ao (Ao = max at)
OSiύn

provided

(9.4) Bδ > 2A0 .

This rate of decrease is faster than the linear rate of decrease of
the obstacle g in Gt. Hence w lies below g.

Next, w < 0 outside some (A1/τ/~7Γ)-neighborhood N (in Πn+1) of
7Γ°. We now compare w with % in N. By the calculation leading
to (7.5) we find that

Mw — aw > —Kjcδπl — aw > — c

if δ is sufficiently small independently of c; we use the fact that

aw <̂  ααo(l — πQ) ̂  —aaoc ^ — c in ΛΓ .
4 4

Since tt^won 9ΛΓ, Lemma 3.1 implies that u ^ w in iV.
Since tt; = # at τr° it follows also that ^(π0) = g(π°) provided δ is

sufficiently small and provided (9.4) holds. This completes the proof
of (9.2) for points in C Π GQ; the proof for C C\Gt (ί ^ 1) is similar.

Denote by G any compact subset of Πn+1 and set

jDε = {ε-neighborhood of the ridge} Π G .

THEOREM 9.2. There exists a positive constant A (depending on
G) such that, for all c sufficiently large,

(9.5) C contains DA/C .

The proof is similar to the proof of a corresponding result in
[6; §4] for the elastic-plastic torsion problem.

Proof. Suppose π° e DA/C Π GQ and π° $ C. Suppose for simplicity
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that 7Γ° is close to Ga at least as much as it is to any other Giy

i :> 1. Take points 7Γ1 G GO, π2eG1 such that π° is the center of the
segment πιπ2, \πx — π2\ — Aoσ, σ = dist.(π°, R); Ao is chosen so that

~[g(π2)

both Ao, Aλ are positive constants depending only on α0, αlβ Since
uiπ1) S giπ1), u(π2) ̂  g(π2), u(π°) = g(π°), we obtain

where N is some neighborhood of π°. By standard estimates for
variational inequalities [4], the right hand side is bounded by Azσ

2c;
here A2, Az are positive constants independent of c. It follows that
σ ;> l/(A3c), and the proof is complete.

10* The case a = 0. For simplicity we shall assume in this
section that (1.9) holds. Since c > 0, if Eπτ is sufficiently large
then Jπ{τ) > V{π). Thus we may write

(10.1) V(τ)= inf Jπ(τ)
Eπr<K0

where KQ is some sufficiently large positive constant (depending
on c).

The existence of a bounded solution (and, in fact, uniformly
continuous in Πn+1) for the variational inequality (2.1) with a = 0
is proved in the same way as for a > 0. Theorem 3.2 remains valid
with the same proof when a — 0. Defining τ by (2.12) and recal-
ling (7.11) we clonclude that Eπτ < oo. But then we can apply Ito's
formula in order to deduce that u(π) = Jπ(τ). We also get, by Ito's
formula,

u(π) ^ Jπ(τ)

for any stopping time τ with Eπτ < KQ. Using (10.1) we deduce
that

(10.2) u(π) = V{π) - Jπ(τ) if π e Πn+1 .

This proves the uniqueness of the solution u of (2.1) when a = 0.
Using (10.1), the proof of Theorem 6.1 can be extended with

minor changes to the case a = 0. Theorem 6.2 remains valid with
the same proof.

The results of §§4, 5, 7, 9 extend without any changes to the
case a — 0; instead of (7.12) we now have

(10.3) u{π) ̂ A2c\og— .
c
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From Theorem 8.1 we deduce (for a = 0) that

(10.4) V(π) = (± 7 ^ ) c log -1 + θ(c(log-!) 1 / 2)as c > 0 .

To generalize Theorem 8.2, consider the variational inequality
(8.11) for a = 0:

LQu + 1 ^ 0 ,

(10.5) « ^ αo|i/1 ,

(Lou + l)(u-~ao\y\) = 0

in Rt. A trivial solution is given by ao\y\. We exclude this solu-
tion by requiring that

(10.6) u(y) = O(\yθ) for some 0 < 0 < 1

THEOREM 10.1. Let (1.9) hold. Then there exists a unique
solution u of (10.5), (10.6); further,

(10.7) 0^a(i/)^Clog( | i/ | + 1)

for some positive constant C, and

(10.8) ί ϋ ! ^ >u(y)
c

uniformly in y in compact subsets of int R$.

Proof. Let

αo| V\ if IVI ^ δ ,

A log 12/1 + J5 if 12/1 > δ .

For suitable positive constants 3, A, B, one finds that z is a super-
solution, i.e., Loz + 1 ^ 0 . Hence

0 ^ uA(y) ^

where uA is the solution of (8.14) with a = 0. It follows that

(10.9) 0 ^ u{y) ^ C log(|»| + 1) , fϊ(») = lim a^d/) ,

where C is a generic positive constant independent of c.
Next

u(π) ^ wo(r) ,

where w0 appears in (7.10). Recalling the precise form of wQ(r) we
compute that
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(10.10) wc(y) - ^ 1 ^ ΈM} ^ Clog(|2/| + 1)
c c

provided | y ] ̂  S0/c where o0 is any positive constant (independent
of c).

We are now ready to proceed with the proof of (8.31), (8.32) in
the case a — 0. From (10.9), (10.10) and the form of the cost func-
tionals corresponding to u, wc we see that we may restrict the τ
to satisfy

(10.11) τ ^ τA , Eyτ ^ C\og(\y\ + 1) ^ Clog(A + 1) .

The last term in (8.23), for a — 0, is bounded by

(10.12) IA = Clog(A + l)Py[τA < τ] .

Now, for any β > 0,

Py[τA < τ] - P,[<r><7 !-'> > 1] ^ ^[e-^ ? l-»]
( * } £ {Ey[e-e**'ψ*{Ey[e^]Y''

where 1/p + 1/q — 1, p > 1, g > 1.
Since the stopping times which minimize the cost functions are

exit times, we may take τ to be an exit time. Using the second
inequality in (10.11) it then follows by ([8; p. 43]) that

(10.14) Ey[eβ9r] ^ C provided β =
Clog(A + l

From the proof of (8.19) with λ - 1 = pβ/C we get

E
y

c\y\λ

A

substituting this estimate and (10.14) into (10.13), we get

(10.15) Py[τA < τ] ^

Consequently, from (10.12), for any rj > 0,

IA < η if A is sufficiently large

A is independent of c. From now on A is fixed. Hence, if c is
sufficiently large (depending on A),

<V>

In order to complete the proof of (8.31), (8.32), it remains to show
that
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(10.16) E,\\v.{τ)\-\y{τ)\\<y.

Now, by (10.11), for any T > 0,

Py[τ >T]£JrEyτ£ ^log(\y\ + 1) .

Hence, if y varies in a compact subset,

AEy[τ > T] < Ύ] for a suitable Γ > 0 .

Since, on the other hand, (8.27) holds, the estimates (10.16) follow if
c is small enough. We have thus completed the proof of (8.31),
(8.32).

Suppose finally that u is another solution of (10.5), (10.6). Re-

peating the preceding proof of (8.31), (8.32) with wc(y) replaced by

u(y) and choosing p in (10.15) such that 1/p > θ, we find that

u = u.

11* The case where w{t) is A -dimensionaL In this section we
extend many of the results of the previous sections to the case
where w(t) is Λ-dimensional; the condition (1.1) is dropped. Thus
the generator M is generally a degenerate elliptic operator in the
entire region Πn+1. We assume, however, that (1.9) holds, so that

(11.1) Λ(r) -

From (11.1), (1.15) and the strong Markov property we get

V(π) - inf
(11.2) τ^τN

for any stopping time τN.

THEOREM 11.1. There exists a Π°n+1-neighborhood Si of et such
that S,cS.

Proof. Set W = V — g in a neighborhood N of e0 where g(π) =
αo(l ~ π0), and let τN = exit time from N. Thus, for any stopping
time τ ^ τN

- g(π)] =
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Therefore, by (11.2),

W(π) = V(π) - g(π) = inf Eπ ) ( T Λ Γ V α t (c - ag)(π{t))dt
(11.3) ^ N ϋ °

Note also that W ^ 0 and that c - ag ^ C* > 0 if N is sufficiently
small.

The function z defined following (3.11) satisfies

Mz — az + 7 ^ 0 (with 7 < c — ag) ,

^ ^ 0 ,

(ilfe — az + τ)« = 0 ,

and

2 ^ w on 17/1 = R .

Using Ito's formula we obtain

z(π) - inf E'\\T*TNe-tttΎdt + e-αr^(7r(rγ))/Γ==r Ί .

Comparing with (11.3) we conclude that

z(π) ^ W(π) .

Since z(π) = 0 where TΓ varies in some neighborhood of eQt the same
follows for W; this completes the proof.

Theorems 6.1, 6.2 remain valid with the same proof.

LEMMA 11.2. The estimate (7.11) is valid.

Proof. Because of the degeneracy of M, we need to choose the
functions Wt differently than in the proof of (7.11) in § 7. For
simplicity we exhibit the construction in case n — 2. Take

Wo = log π^π* + log δ^ + δ*π*
e ε

outside an ε-neighborhood of eQ, where dλ = 1, d2 = 3. Thus WQ ^ 0
and

= Mlog(ττ1 + π2)

4 - ^ ) 2 + ( ^ - δ2π2)
2]4
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where r = πx + ττ2 and Ao, A are positive constants.
Similarly, we define the Wt with respect to et and notice that

MWt ^ 0 , Wt ^ 0 .

Hence W = Σ U TF* satisfies MTF< -A, W > 0 outside an ε-neigh-
borhood of the vertices. This implies, by Ito'sΓformula,

and (7.11) follows.
Using (7.11) we can now derive Theorem 8.1 as before.
Theorem 8.2 asserts that

(11.4) ^ S l >%(g) as c >0
c

where ί%) is defined by (8.25), (8.26). The proof can actually be
given by comparing the cost functionals and without introducing
variational inequalities at all. Notice that the crucial estimate (8.12)
remains valid here (with the same proof) and that also the in-
equality

(11.5)

which is needed in proving (11.4) is true (in fact, taking τ —> oo in
the cost functional which defines u we obtain (11.5)).

The proof of Theorem 3.2 extends to u (cf. the proof of
Theorem 11.1), showing that the stopping set S contains a neigh-
borhood of each vertex. This proves the part

of Theorem 7.1; the other part follows as in the proof of Theorem
7.1, since

The convexity of S (Theorem 8.3) remains unchanged. Finally,
the results of § 10 (the case a — 0) extend with minor changes.

We shall now obtain additional information, taking n = 2 and
w(t) to be 1-dimensional. We also take for simplicity

Writing πt(t) in terms of the observed process (see (1.11)) we
easily compute that
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(11.6)
π2p2

where pd —

The mapping

σ: (f (ί), t) •

is 1-1, mapping the half-plane t > 0 onto a subset of Π 3 defined by

π\
P1P2

The ridge of Π3 is not in the stopping set S and σ maps St onto a
set ΣtJ s e e the accompanying figure.

Take a point £ on the ί-axis and mark the point A' = (£', ί) on
dΣ0 with f' < 0. Denote by p(t) the distance from A! to 32Ί; it is
achieved at B'edΣ^ Denote by A, B the inverse images of A!, Bf

under σ.

THEOREM 11.3. As t -> 00

(11.7) log
β(X ~
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where a, β are positive constants described in the previous figure.

Proof. Write

A = (π0, TΓJ, π2) , JB = (ττ0, iflf π2) .

Then, as £ —> oo,

τr2 > 0 , π2 > 0 , π 0 > α ,

τrx > l - α , τr0 >/3, 7fx > l - / 9 .

Set t ing

τr2 = ε , τr2 = έ ,

we can then w r i t e

πQ = α - 7 ε , ^i = 1 — a + 7 e — ε ,

^o = /3 - δe-s , TΓi = 1 - /9 + ί.: - ε ,

where

ε > 0 , έ • 0 , 7 ε > 0 , δε; > 0 as ΐ > oo .

From (11.6) we find t h a t

I 4

Hence

where λ = ε/ε, o(l) —> 0 as t —> oo.
From the definition of J3' it follows that

where

t 4 L 1 - α J

Set

= i ( l o g fcλ)2 + (log hx)2 (k > 0, h > 0)

Then min jθ(λ) is obtained at

X =
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Using this value in our special case of p, (11.7) follows.
Consider next the point (£, t) — (0, τe) on dΣ0.

THEOREM 11.4. As c —> 0

1
(Π.8) τ c ~ l o g

where 7 is a positive constant.

Proof. (0, τc) corresponds to (π0, πl9 π2) where, by Theorem 8.2
and 8.3,

and 7X = 72 = 7 since 7^ = 7Γ2. Since

7Γ17Γ2 7Γχ

the assertion follows.

REMARK. Theorems 11.3, 11.4 have the advantage of providing
direct information on the observed process (ξ(t), t). In case n > 2
we get a similar picture with n + 1 regions Σt in the half-plane
t > 0 (of the (£, t) variable).
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