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DIFFERENTIAL EQUATIONS

W. J. Kmm

A classification of the nonoscillatory solutions based
on their asymptotic properties of the differential equation
y™ L+ py =0 is discussed. In particular, the number of
solutions belonging to the Kiguradze class A, is deter-
mined.

We investigate asymptotic properties of the nonoscillatory solu-
tions of the differential equation

(E) y™ -+ py =0,

where p is a continuous function of one sign on an interval [a, o).
Various aspects of Eq. (E) have been investigated by a number of
authors {1-15]; in most cases, under the condition that the integral

(1) 1) = | " p@)|de

is either finite or infinite for some constant . For instance, Eq. (E)
is oscillatory on [a, o) if the integral (1) is infinite with r=n—1—¢
for some ¢ >0 [4, 8]. On the other hand, if I(n — 1) is finite, (E)
is nonoscillatory; in fact, it is eventually disconjugate [9, 14, 15].
Under the same condition, results on the existence of a fundamental
system of solutions possessing certain asymptotic properties have
also been obtained [5, 13]. Of particular interest to the present
work, however, is the notion of class A, introduced by Kiguradze
[4] with the help of inequalities in Lemma 1.

A solution of () is said to be nonosecillatory on [a, «) if it does
not have an infinite number of zeros on [a, ). (Unless the contrary
is stated, the word “solution” is used as an abbreviation for “non-
trivial solution.”) Eq. (E) is said to be nonoscillatory on [a, =) if
every solution of (E) is nonoscillatory on [a, ). If there exists a
point b = a such that no solution of (E) has more than n — 1 zeros
on [b, «), Eq. (BE) is said to be eventually disconjugate on [a, o).

As previous studies of Eq. (E) indicate, asymptotic properties of
the solutions strongly depend on the parity of # and the sign of p.
For this reason, it is convenient to classify Eq. (E) into the following
four distinet classes:

(1) n even, p=0,

107



108 W. J. KIM

(it) n odd, p=0,
(i) n even, p=0,
(iv) n odd, p=0.

Eq. () satisfying condition (i), for example, is denoted by (E)); (E),
(Bi1), and (E;,) are similarly defined.

We state important inequalities which will be used in defining
the class 4, and also in some proofs.

LEMMA 1. Let y be a nonoscillatory solution of (E) such that
Yy =0 on [b, <) for some b = a, and let p = 0 on [b, o) for every
b, = a. Define [C] to be the greatest integer less than or equal to C.

If y is a solution of (E;) or (E;,), there exists an integer j,
0< 7= [(n— 1)/2], such that

(2) y? >0, i=0,1,.--,27,

on [b,, =) for some b, = b, and
(2% (=DHy? >0, 4=2j+1,---,n—1,

on [b, ).
If 4y is a solution of (E;) or (E;;), there exists an integer j,
0 = 7 £ [n/2], such that

(3) y9 >0, 1=0,1,---,27 -1,
on [b,, o) for some b, = b, and
(3) (=" >0, =25 --,n—1,

on [b, o).

Various versions of Lemma 1 appear in the literature [2, 5, 6,
12]. However, the important features of the present version are
that the inequalities in Lemma 1 are strict and that the inequalities
2"y and (8’) hold on [b, oo)—rather than on [b, «) for some b, = b—
if y =0 on [b, ). Following Kiguradze [4], we shall say that a
nonoscillatory solution y of (E;) or (E,,) belongs to class A; if y or
—y satisfies the inequalities (2) and (2) for 0= 7 = [(n — 1)/2].
Similarly, a nonoscillatory solution y of (E;;) or (E,;) is said to belong
to class A; if y or —y satisfies the inequalities (3) and (3") for 0 =<
7 =[n/2]. In view of the above definition, we may restate Lemma
1 as follows: The family {4, A, ---, Ar_n=} forms a partition of
the nonoscillatory solutions of (E;) and (E;;), and the family
{4, A, -+, Ap,m} forms a partition of the nonoscillatory solutions of
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Esy) and (Ej;).

LEMMA 2. Ifthe class A, contains three solutions v, v,, and v,
of which every montrivial linear combination again belongs to A,
where 0 = k < [(n — 2)/2] for (E;) and (BE,) and 1 =k = [(n — 1)/2]
for (By) and (By,), then A, contains three solutions ¥y, ¥, and Y,
each a linear combination of v,, v, and v, such that

lim @) — o, 1<i<j<3.
a—e Y,()

Proof. Without loss of generality, we may assume that v, >
v,>v,>0 on [¢, o) for some ¢=a. The quotient v;/v,, 1<1<j<3,
cannot assume a fixed value v an infinite number of times on [e, <),
for otherwise v; — vv, would be an oscillatory solution contrary to
the hypothesis. Therefore,

25@) _ Jim inf 2@ = lim 4E _ g

i 9

lim sup
e 0() e W) e 0i(2)

1

1=K ;< >, 1=i1<j=8. At first there appear to be eight
different possibilities we must consider, depending on K;; = « or
K,;< o,1=<i<j=3. But note that if two of the constants K,;,
1 <4< j=<8, are finite, the third also must be finite. Furthermore,
it is impossible to have K, = K,; = « and K,; < . Hence we need
only to consider the following four cases.

(@ Kj;=,1<i1<j=38 Puty =wv,1=123.

(b) K, < o, K; = K,, = co. In this case

lim &) — Ku®@) _ g e, lim (@) = o
gm0 v,(2) a0 | V() — Kiy0,(2)

Put y, = v, — Ky, ¥, = vy, and Ys = Vs.
(¢) K,=K,;= o, K;; << . Here we have

hm U3(x) _ K23”2(x) — 0 .
g0 ’02(:1))

Suppose that

lim V() — Kis0,(2%) =K.
Feo ,vl(x)

If |K|= co, put y, = v, ¥, = v; — Ky3v,, and 9, = v,. On the other
hand, if | K| < <, then

lim 1)3(93) - Kzavz(x) - Kvl(x) =0
2o v,()
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and we put y, = v, — K,,v, — Kv,, ¥, = v, and y, = v,.
(d) K;;< »,1=1<j=3. For this case

lim V(%) — Kp0,() = lim vs(%) — Kis0,(2) =0.
#en () e vy()

Suppose that

lim V(%) — Kiy0,(%) —
#e0 ’vs(x) - sz'vl(x)

If |[K|= o, let y,=v,— Kgw, y,=v— Ky, and y,=v,. If
| K| < oo, then

lim vz(x) _ KIZvl(w) _ K(’”s(“‘) _ K137)1(x)) =0
g0 vs(x) — K,;v,(x)

and we put y, = v, — (K, — KK,;)v, — Kvy, ¥, = v, — K0, and y; = v..
The solutions y,, 2 =1, 2,3, defined in (a)-(d) belong to A, and
satisfies

U@ _ o 1<i<j=<3.

lim
Since we may take —y, if y, is eventually negative as x — o, the
proof is complete.

LEMMA 3. Suppose that Eq. (E) has there monoscillatory solu-
tions Y, Y., and Yy, such that

(4) im %3 — o 1<i<js3,

e Yy(X)
and Y; > Y, >y, > 0 on [, «). If 7 is an arbitrary point on [&, ),
there exists a solution v = D, Q.Y such that v =20 on [& ) and
() = v'({) = 0 for some point L on [, «).

Proof. Choose a constant K>0 such that u=y,— Ky, <0 on [&, 7].
Since u < 0 on [£, 7] and eventually u(x) > 0 as & — o, u vanishes
at some point of (7, «). Let ¢ be the first zero of u on (7, «).
Define K, = sup G, where G is the set of real numbers 3 = 1 such
that ¥, — Bu = 0 on [, ). Evidently, G is bounded above and it
is nonempty because ¥y, — u > 0, i.e., 1€ G. Let 8€G and r €0, ).
If w(z) £0, then y,(z) — Ku(r) = y5(r) > 0. On the other hand, if
w(z) > 0, then y,(z)/u(r) = B for all Be @, and thus y,(7)/u(zt) = K..
Since 7 is arbitrary, the solution v = y; — K.u = 0 on [g, ). There-
fore, if v({) = 0 for some { € (0, ), then v'({) = 0. Hence, the proof
is complete if we can show that ¥({) = 0 for some {e(0, ). Assume



ASYMPTOTIC PROPERTIES OF NONOSCILLATORY SOLUTIONS 111

to the contrary that » > 0 on (g, ). Let ¢, > 0 be given. There
exists p > o such that u > 0 on [p, «) and v(x)/u(x) > ¢, x€lp, ),
since

lim 2@ — o
oo U ()

by (4). Choose an ¢, > 0 so that v(z) > su(w), xz€lo, p]. Put ¢ =
min (e, &,). Then v —eu >0 on [o, «), i.e., y; — (K;+€)u>0 on [o, ),
contradicting the choice of K,. Thus, v() = 0 for some {e€(g, ).
Finally, it is evident that v > 0 on [£, ¢] and v = 0 on [£, ).

We are ready to consider the problem of determining the number
of solutions belonging to class A;. Let ¢(4;) be the maximum
number of linearly independent solutions belonging to A; with the
property that every nontrivial linear combination of them again
belongs to class A;.

THEOREM. Assume that Eq. (E) is nonoscillatory on [a, =) and
that p £ 0 on [a, ) for every a, = a. Then

gq4)=2,35=0,1,---, (n — 2)/2, for (E;

@A) =1, q4,)=2,7=12, -+, (n — 1)/2, for (Ey);

@A) =1, qA) =2, 7=1,2, .-+, (n — 2)/2, q(A,p) = 1, for (E.);

qA)=2,3=0,1---,(n—3)/2 qAn_ne =1 for (Ey).

Proof. We shall prove the theorem for (E;;;): ¢(4,) = 1, ¢(4;) = 2,
i=1,2 +--,(m — 2)/2, and ¢q(4,, = 1. Suppose that the class 4;
contains a set B; of g(A4;) solutions of which every nontrivial linear
combination again belongs to 4;,5=0,1, ---, #/2. Using Lemmas 1
and 2, we can easily deduce that the set B = U}% B; containing
>z g(A;) solutions is a fundamental system for (E,;). Thus,

*2 q(A;) = m. For this reason, it suffices to prove that

(5) ql)=1, gd)=2, 7=1,2---,(n—2)2q4,)=1.

If q(A,) > 1, then there exist two solutions y, and y, belonging to
A, and a constant K such that w =y, — Ky,c 4,, w() =0, and
w = 0on [e, =) for some ¢ = a. But this contradicts Lemma 1 (see
also Kiguradze [5, Lemma 7]) and proves that ¢(4,) < 1. Suppose
that q(4,) > 2 for some k, 1 <k < (n — 2)/2. Then the class A4,
contains at least three solutions y,, v,, and y,, of which every non-
trivial linear combination again belongs to A4,. By Lemma 2, we
may assume that

=3

— ’

?1“%’.%:”’ 1<i<j
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and ¥, > ¥, > ¥y, >0 on [§ o) for some £ =a. Let {7} be an in-
creasing sequence of numbers such that 7, = cand 9, — « ag 1 — oo,
By Lemma 3 there exists for each 7, a solution

v = Ay, + B+ Vs, o+ B +vi=1,

such that v, = O on [¢, ) and v,(,) = vi{{;) = 0 for some {, € (¥, ).
Obviously, there are convergent subsequences {a,}, {8,}, and {v.},
which will be again denoted by {a.}, {8}, and {v;}, respectively, for
notational simplicity. Put

lima;, = a, limp, =4, limvy,=1~.

i—00 i—0oo i—00
Then w(x) = ay,(x) + By.(x) + vy,(x) is a nonoscillatory solution
belonging to the class A,. Since w = 0 on [¢, =), we have

(6) w>05w'>01”'7w(2k‘1)>07
n [b, ) for some b, = &, and
(7) ,w(zk) > 0 , w(2k+1) < 0 , w(2k+2) > 0, e w(n—l) < 0 ,

on [£, ) by Lemma 1. We now use a line of reasoning due to
Kondrat’ev [7]. Since lim, .. v{’ = w?, 5 =0,1, .-, n, uniformly on
any finite subinterval of [a, «), there exists a number N such that

(8) W%»>W(w>o G=0,1,--,2%—1,

if ¢ > N. We may assume that 7, > b, for ¢ > N. Since v;€ A, and
v; =0 on [§, o) for all 4, v > 0 on [§ o) by Lemma 1. Thus,

(9) v (b,) < o), TEe[by ).
Substituting (9) in (8) with j = 2k — 1, we obtain

()

2 ? Te[b.‘b OO)

(10) v*(T) >
Integrating the above inequality from b, to x € [b,, «) and substituting
in the resulting expression the inequality (8) with 7 = 2k — 2, we
get

(b w(2k~2) (bz)

2)
——(x —b,) + p

,U(2k 2)(x) >

Repeating a similar procedure 2k — 2 times, we arrive at the
inequality
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wmk*l)(bz) B \2k—1 w*-(b,) B \2h—2
a vy(x) > m(w b,) + _————2(216 —2)1 (® — by)

TR +——~w(2bz) , welb, ).

This inequality, however, cannot hold throughout the interval [b,, <o).
Indeed, for x = £, > 7, > b,(t > N), the left-hand side »,({;) = 0, while
the right-hand side is positive by (6). This contradiction proves
that q(4;) <2, 7=1,2, ---, (n — 2)/2. The proof that ¢(4,.) =1 is
more or less similar to the preceding case. Suppose that A4,,
contains two solutions ¥, and y, of which every nontrivial linear
combination belongs to A,,. Assume that y, >y, > 0 on [§, =), and
let {n,} be defined as before. Put

v; = oy, + B ai +B8i=1,
such that v,(%,) = 0. If

lima; = «a, lim B, =
(take subsequences, if necessary), define w = ay, + By,. Then we A4,,
and we may assume that w = 0 on [b, ) for some b. Hence, by
Lemma 1,

(12) w>0w>0---, w"" >0,

on [b,, o) for some b, = b, and the inequality (8) holds for ¢ > N,, for
some N,, and for j =0,1, ---, » — 1. Assume that », > b, for ¢ > N,.
For each ¢ > N,, there exists ¢;€ (b, 7] such that v,c;) =0 and
v, >0 on [b, ¢;), since v,(9) = 0. On the interval [b, ¢;], we have
v"(x) = —p@)v,(x) = 0. Therefore, v{"V(b,) < v{"(c), v €[b,, ¢;], and
when this inequality is substituted in (8) with j = n — 1, we get

(13) v(7) > 1‘9(——_2—’@ celb, ¢l .

Following the procedure employed to get from (10) to (11), we
alternately integrate (13) from b, to « €[b,, ¢;] and substitute in the
resulting expression a suitable inequality from (8) (which holds for
=01 ..., m—1, in this case). When this process is repeated
n — 1 times, we arrive at

) W) 0 pynr g WOV g yas
v,(x)>2(n_1)!(x b,) —I—2(n_2)!(x b,)

4o +——wg’2) . welb, cl.

However, this inequality cannot hold at z = ¢, because wv,(c;) =0
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while the right-hand side is positive by virtue of (12). Consequently,
g(A,,) <1, and the proof is complete for (E;;). Proofs for (E,), (E.),
and (E;,) are similar.

This theorem generalizes a main result of Etgen and Taylor [3].
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