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EMBEDDINGS OF THE PSEUDO-ARC IN E?

WAYNE LEWIS

In this paper, we show that there exists an embedding,
P,, of the pseudo-arc in the plane such that any two accessible
points lie in distinet composants of P,. We also show that
there are ¢c=2% distinct embeddings of the pseudo-arc in the
plane, including for each positive integer »#, one with exactly
n composants accessible. This answers some questions and a
conjecture of Brechner.

For definitions and notation of chain (from p to ¢), link, crooked,
ete., see [1] and [7]. The links of our chains will always be the
interiors of disks, and if two links of a chain intersect their inter-
section is the interior of a disk. When a chain D refines a chain
C, we shall always require that the closure of each link of D be
contained in a link of C.

First we deseribe the special embedding P,, then prove Brechner’s
conjecture that any two distinet accessible points of P, lie in
distinet composants. Let C, be a chain in E? from point » to point
g which runs straight across from left to right horizontally. Let
C, be a chain also running from p to ¢ which is crooked in C, and
descending, as in Figure 1. If we think of C, as straightened out

Ficure 1
Only the nerve of C; in C; is shown.

with p on the left and ¢ on the right, then C, is a chain from p
to ¢ which is crooked in C, and ascending. We continue in this
manner, alternating descending and ascending chains, so that C, runs
from p to q, mesh (C) < 1/2¢, C,;, refines and is crooked in C,, and
C,., is descending (ascending) in C; if 7 is even (odd). The pseudo-arc
P, is Nico, Cf. (If A is a collection of sets, A* is the union of A.)

THEOREM. Any two distinct accessible points of P, are inm
distinct components.

Proof. We can draw horizontal rays to the left from p and to
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the right from ¢q. A top accessible point will be a point of P, which
is accessible by an are lying in the upper complementary domain of
P, plus the two rays (except for the endpoint of the arc in P,). A
bottom accessible point is defined similarly. We will show that any
two distinct top accessible points are in distinet composants. A
similar argument will show that any two distinet bottom accessible
points are in distinet composants.

Let ¢ and b be distinet top accessible points. Suppose a =
N.co, Cila;) and b = N;co, Ci(b;). Let a and B be arcs above P, with
anNP,=aand 8N P,=b. We can suppose without loss of generality
that for each 1€ w,, a N C¥ and BN C} are connected.

Claim. The subcontinuum M of P, irreducible between a and b
contains both p and ¢ (i.e., for each i € w, and sufficiently large jc w,
the subchain of C; between Cj(a;) and C,(b;) has links in each of
C,(0) and C,n,;), where C/n,) is the last link of C,).

Proof of claim. For each icw, there exists ke w, such that,
for j =z k, cl({C;(n)|Ci(n) Na # @}*) < Ci(a;) and cl ({C;(m)|C;(m) N
B # @}*) S Cy(b;). Choose 7 large enough that there are at least two
links of C, between C,(a; and C,b,), and k > ¢ so that the above
condition holds and it takes at last three links of C, to span between
nonadjacent links of C;, or to reach from C,(0) to C;1) or to reach
from C,(n,) to C,(n, — 1).

Consider j > k such that j is even. Then {C;(»)|C;(n) N o = @}
and {C;(m)|C;(m) N B + @} are separated by several links of C,.
Suppose {C;(n)|C;(n) N @ # @} comes first in C;. Then because C,,,
is descending in C; and a, B lie above P,, C;.,(a;+,) is in the maximal
subchain of C;;, with no links reaching past {C;(n)|C;(n) N a@ # O}*.
But C;i,(b;+) is not in any of the links of C; up to this point (or
in fact at least three links beyond), so by crookedness of C;., in C;
there is a link v of C;;, between C;.(a;s,) and C;;,(b;1,) with v &
C,(1) < C0).

Similarly, if j is odd, there is a link & of C;,, between C,,(a;+,)
and C;.,(b;+,) with 6 S Cj (4, — 1) € Ci(n,). Thus the subeontinu-
um M of P, irreducible between a and b contains both p and gq.
Hence M = P,, and a and b are in different composants of P,.

Similarly any two bottom accessible points of P, are in different
composants. By Theorem 3.1 of [5] if top and bottom accessible
points of P, are in the same composant C of P, then either peC or
geC. Thus the top and bottom accessible points must be the same
and be either p or q. So any two distinct accessible points of P,
are in different composants.
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It follows from [8] that, though P, has ¢ = 2*° distinct ac-
cessible composants, there exists some component of P, which is not
accessible.

2. Other embeddings. We will now show how to obtain ¢ = 2*°
distinet embeddings of the pseudo-arc in the plane. These will be
distinguished by use of prime ends and accessibility. First however
we will deseribe ¢ = 2*0 distinet 0-dimensional closed subsets of the
unit cirecle, S, which will be associated with these embeddings.

Let X; =¢% for j=1,2,-.--. (This is the only place in the
paper where ¢ is not an integer or finite ordinal. Here of course
i =1"—1. In all later discussion, we return to letting i be an
integer or ordinal.) Let X, = 1. This is a simple sequence which
divides S! into a countable number of open intervals. For any sub-
set A of {1,2, .-}, let C, be the closed set consisting of {X},..,
together with a Cantor set in the open interval between X, and
X, for each 1¢ A. We shall describe how to embed a pseudo-arc
P, in the plane such that its space of prime ends is homeomorphic
to S' by a homeomorphism &, where for each open interval I of
St — C, all accessible points which correspond to prime ends in A *(I)
are in the same composant of P,, and accessible points which cor-
respond to prime ends in different intervals are in different com-
posants of P,. Thus if A and B are distinct subsets of {1,2, ---}
then P, and P, are inequivalently embedded in the plane.

For each basic Cantor set C in C,, C = )., C(t) where each
C(1) is a finite collection of closed intervals in S* and C(i + 1) is
obtained by removing open intervals from the middle of each com-
ponent of C(7). Order the set of all endpoints of components of
C(i)’s such that each endpoint of a component of C(¢) comes before
each endpoint of a component of C(¢ + 1) which is not also an
endpoint of a component of C(2).

Let {y}.co, be a well-ordering of the set of all end points of
components of S* — C, such that:

(L) =X, and ¥ = X,.

(2) For each brsic Cantor set C in C, the restriction of the
well-ordering of {y}:;.,, to points in C is the ordering described
above.

(3) Both X; and X, come before any point of a Cantor set
between these two points.

Let C, be a chain in E*® running straight across horizontally
from a point z, (in link L,) to a point 2z, (in link L,). (Consistent
with our previous notation, subseripts will not indicate adjacent links
but will rather indicate points z contained in these links.) Suppose
inductively that chain C,; has been formed with distinet nonadjacent
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links L, L,, ---, L,;, specified so that the ordering of the L,’s along
the chain corresponds to the ordering of {y;};<;+, in S* going from
X, to X, clockwise. Suppose also that points z; have been specified
in each L; with st(z,;, C,) = L;. We will now describe how to form
chains C,,,, (refining C,) and C,,., (refining C,,.,).

Think of chain C,, as straightened out horizontally with 2z, on
the left and z, on the right. Let {W,},<;+. be the ordering of {y;};<i+,
induced by the order of the points in S' from X, to X, clockwise.
Let ¢ be a bijection such that W, = y,, for each n =¢+ 2. In
C.; chain C,,., is a chain (see Figure 2) from 2z, to z, which starts

Zs &

Z
Z i ]

—

Z,

FIGURE 2
One possible cofiguration of the nerve of C; in C, is shown.

by running straight from L, to L, then consists of segments D,,
for 1 < n <14 + 2, such that (for u(n) =1 + 2):

(1) D, runs straight from L, to L,,, above all previous parts
of C,,,, straight back to L, above all previous parts of C,.,,
straight to L, below all previous parts of C,.,, then straight back
to I, below all previous parts of C,.,.

(2) The bend D, in Ly, contains z,,,, where W, = Y-

(3) D, intersects only D,_, and D,,,, each of which it inter-
sects in an end link.

If y.., is a point of a basic Cantor set C of C, and is either
the leftmost point of C or the left end one of the intevals re-
moved in forming C (by the C(i)’s), then D; (where u#) =1 + 2)
satisfies conditions (1) and (3) with L,., being the link of C, im-
mediately after L,;_,. Choose 2,;, in the bend of D; in L,;_, (and
not in either adjacent link of C,.,). Otherwise do the same with
L,,, chosen to be the link of C,, immediately before L,;,,. The
chain C,,,, is the union of the D,’s and the initial straight segment
from L, to L,.

To get chain C,,,, think of straightening C,;;, out horizontally
with 2z, on the left, and consider the set I of links of C,;., which
are either end links of the D,’s, links where the bends of the D,’s
occur, or end links of C,,,,. In each subchain of C,, connecting
consecutive elements in I', place a crooked descending chain going
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between the two ends (and if a 2, is in such a subchain place it in
the appropriate end link of the crooked chain). This can be done
so that the underlying point sets of crooked chains in adjacent sub-
chains intersect exactly in an end link. Chain C,, will be the
union of these small crooked chains.

Note that, while C,,., is not erooked in C,, nor is Cy., in Cyyy,
chain C,,., is crooked in C,. If we do this so that the mesh of the
chains gets arbitrarily small, then the intersection is a pseudoarc
P, [2]. By construection, each z; is accessible, and different z,’s lie
in different composants of P,.

Let h be a homeomorphism between the space of prime ends of
P, and S! such that A(Z,) = y, for each 7< w, where %, is the prime
end associated with the accessible point z,. Suppose p and ¢ are
accessible points of P, with associated prime ends % and §, where
h(®) and k() lie in the same component I of S'—C,. Let a
(respectively b) be the accessible point whose associated prime end
@ (resp. b) is mapped by k to the largest (smallest) endopoint of I
in the counterclockwise ordering (0, 2z] of S

Claim. Each of p and ¢ is in the same composant of P, as the
point a.

Proof. Let o and B be disjoint rays to infinity which intersect
P, only at their endpoints a and b respectively. Let = be a ray,
disjoint from « and B3, which intersects P, only in its endpoint p.
We may assume that, for each 1ew, w N C} is connected (as are
also anNCf and sNC¥). If a =y, and b = y,, choose N bigger
than both m, and m, and such that the sets {{eCylanl = @}
{leClmznl= @} and {leCy|B NIl =+ @}* are disjoint. For each
n > 2N, let M, be the minimum subchain of C, containing both
{leC,lanl= @} and {{eC,lt Nl =+ @}. Then for each n > 2N,
cl (M} S el (M)), by our construction of the C,’s (and since there
are no other y,’s between a and b). Thus M = N,..ycl(M}) is a
proper subcontinuum of P, containing both a and p. Similarly,
there is a proper subcontinuum of P, containing both a and gq.

By the above claim, the fact that all of the y,’s are in different
composants, and Theorem 3.1 of [5], we get that » and ¢ are in
different composants of P, if h(p) and h(§) are in different com-
ponents of S* — C,.

If we use the above procedure to construct pseudo-ares, but
stop introducing new z,’s and L,’s at some point, we can obtain for
each positive integer 7 a pseudo-arc in the plane with exactly 4
composants accessible.
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3. Questions. Though our P,’s are all embedded differently
in E? any two contain equivalently embedded subcontinua (e.g., ones
containing z,). This leads us to the following question.

Question 1. Do every two pseudo-arcs in the plane contain
equivalently embedded subcontinua? (A comparison of subcontinua
of P, with subcontinua of P, might be useful here.)

The following is also of interest.

Question 2. Are there ¢ = 20 distinct embeddings of the pseudo-
circle in E*? of every hereditarily indecomposable plane continuum?

We know that, though there are embeddings of the pseudo-arc
with ¢ = 2% distinet accessible composants, there are also always
inaccessible composants [8]. Of the embeddings we have described,
P, is the only one with the property that any two accessible points
are in distinet composants. Is there any other embedding with this
property?

Michel Smith has recently announced results analogous to these.
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