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Let = be a tempered irreducible representation of
GL (n, R). We prove the expected relation between the
characters of = and its base change lifting.

0. Introduction. To each irreducible representation = of
GL (n, R) is associated its “base change lifting”, an irreducible
representation I/ of GL (n, C). It is expected that the characters
of these two representations are related in a certain way, at least
if 7 is tempered, and this relation has in fact been proved for
GL (2, R) by Shintani [4], and for representations of GL (n, R)
induced from unramified quasicharacters of a minimal parabolic
subgroup by Clozel [1]. The purpose of this paper is to prove the
relation for arbitrary tempered irreducible representations of
GL (n, R).

The proof involves computations not unlike those used to
calculate the character of an induced representation. The repre-
sentations in question are all induced from parabolic subgroups
whose Levi components are products of copies of GL (2) and GL (1),
so we are able to use Shintani’s results for GL (2) as a starting
point. It is to be expected that a similar “inductive step” can be
proved for the general quasi-split connected real reductive group,
but technical problems make that more difficult.

1. Notation and preliminaries. Let G = GL (), n = 3. Every
irreducible tempered representation = of Gy is induced from a
cuspidal parabolic subgroup Pr. After conjugation, we may assume
P = MN, where the Levi component M consists of 2 X 2 and/or
1 x 1 blocks along the diagonal and N, the unipotent radical of P,
consists of upper triangular matrices with diagonal entries all
equal to 1 and with zero for those entries which lie inside the
blocks of M. Thus M = GL (2)* x GL 1) %*. Also let K = U(n).

We recall some remarks about o-conjugacy (see, e.g., [1], §2).
Write g° for the complex conjugate of an element geG.,. Two
elements ¢, ¢’ € G, are o-conjugate if g = h’g’h~*, for some heG..
If ge G, its norm is defined by Ng = g°9. If g and ¢’ are o-con-
jugate, then Ng and Ng' are conjugate in G.. As usual, we write
G¢ for the regular elements of G¢; we shall say g is o-regular if
Ng e G;, and write G} for the o-regular elements of G.,. The com-
plement of G7 is a real analytic subvariety of measure zero.
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With M = GL (2)* x GL (1)** as above (blocks along the diag-
onal), we wish to find representatives for the conjugacy classes of
Cartan subgroups of M;. Inside each 2 x 2 block, we may take
either the split Cartan subgroup, consisting of the diagonal matrices,
or the nonsplit Cartan subgroup Z-SO(2), where Z is the scalar

matrices. Thus for each ¢, 0 <1 =<k, we have (ff) subgroups which

have i nonsplit factors. We label them T} 1=j= (f), in any
order. For fixed 4, all the T{ are conjugate in G, though not in
M. Fix 4, j; for each [, 1 =1= (i‘), let s;€Gr be such that
s, Tisi* = Tt let S§ = {8, 8, -}

By [1], Corollaire, p. 28, every element g e G¢ is g-conjugate to
an element of Gk, and Ng is conjugate to an element of G,.
Likewise every element m e M is o-conjugate to an element of
Mg, by an element of M, and Nm is conjugate, in M, to an ele-
ment of Mx.

2. Representations. The irreducible representation = of Gg
is induced from a representation of P.. Specifically, let @ be a
discrete series representation of My, and extend it to the representa-
tion @ ®1 of Pr= MyN, trivial on Ni. Then = =Ind o R1,
and all tempered irreducible representations of G arise in this way,
for some P and @ of this type.

The representation ® is associated in the usual way to a (Weyl
group orbit of) character(s) N of (T{)z, the compact Cartan subgroup
of M. The restriction of the norm gives a homomorphism N:
(TF)g — (T¥)g, 80 4 = AoN is a character of (T¥).. The base change
lifting I7 of z is the representation of G, induced from the exten-
sion of 4 to any minimal parabolic subgroup of G¢ containing (TY)c.
We may choose the minimal parabolic subgroup to be contained in
P,. The lifting 2 of w to M, is induced from the restriction of
this character to the intersection of the minimal parabolic subgroup
with M.

To obtain IZ, we may first induce to P, and then to Gg, so
we see that /7 = Ind $¢2 ® 1.

The liftings 7 and 2 are equivalent to their conjugates II° and
Q° (I°(g) = II(g°), ete.); i.e., there are involutions Ay and A, so
that Ayoll(g)oAy = II°(g), AgeR(m)oA, = 2°(m). If feCr(Ge), then
I(f) = g f()II(g)dg is an operator of trace class, and moreover
f —trace (II(f)oAy) is a distribution. We wish to show that this
distribution is in fact given by a function 65, and that 67(g) = 6.(Ng),

where on the right side #. is the character of w, extended to a
conjugate-invariant function on Gge.



BASE CHANGE FOR GL(n, R) 195

Shintani [4] has proved this relation for GL (2), so it follows
immediately for M = GL (2)* x GL (1)>*; in particular, f — trace
(R(f)oAyp) is given by a function 63, and

(2.1) 65(m) = 6,(Nm) .

(Actually, there is an ambiguous sign in the definiticn of the
involution A4,, but we fix it so as to make (2.1) hold.)

Suppose £ acts on the Hilbert space 57,. Then II acts by
right translation on the space 575 of functions ¢: G — 2%, such
that ¢(pg) = 08*(P)(2 @ L)(p)é(9), (pe Pc), and ¢x € LK, 27,)—here
d¢ 18 the modular function of P.. Define the operator A, on 57
by Ang(g) = Axp(9°).

LemmA 2.1. (i) If ¢z, then Ayde o27.
(ii) For geGe, Apoll(g) = II(g°)°Ay.

Proof. (i) The square-integrability is easy. If ge G, pe P,
then A;p(pg) = Aep(p’9%) = 6¢*(p") Ao (2 Q D(p°)g(97) = 0¥ (0)(2R1)(p)°
Agp(g%) = 0¢(p)(2 ® 1)(p)Ang(9).

(i) Agoll(g)g(g9") = A(Il(9)$)(9"") = Aep(g”9) = Aus(9'9°). ]

3. Jacobians. Given the parabolic subgroup P = MN, as above,
we let n be the Lie algebra of N. If me M, (resp. M), then n,
(resp. 1) is Ad(m)-invariant. We denote by ¢ the complex conjuga-
tion on 1., and by 6. (resp. dc) the modular function of P, (resp.
P.); i.e., or(m) = det (Ad(m)|,,); 0c = det (Ad(m)|,,).

DEFINITION. If m e Mg, define d(m) = ox(m)~*det (I — Ad(m))
If me M, define 4°(m) = d(m)~"*det (I — Ad(m)-0),,.

nR*

We remark that 4(m) is invariant under conjugation by M,, so
we may extend it to an Mc-conjugate-invariant function on Mje,
the elements of M, which are conjugate to elements of M,. We
remark too that 4° is o-conjugate invariant—in fact both factors
are o-conjugate invariant.

ProposiTION 3.1. If me M, is o-regular, then 4°(m) = 4(Nm).

Proof. Note that the right side makes sense, since Nm e Mjc.
By the o-conjugate invariance of 4°, we may assume m < T, Where
T is a Cartan subgroup of M defined over BR. Thus Nm = m? and
A(Nm) = 0x(m®)~* T 1 — a(m?), where the product is over those
roots @ which appear in the decomposition of the action of T'; on 1.
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On the other hand, in the action of 7, on 1., the roots occur
in conjugate pairs 43, g8°, where 5°(t) = g(t°), and where 8|z, = 8°|r,
is one of the roots a of Ty in n,. Moreover, the conjugation ¢ on
1e interchanges the root spaces corresponding to g and g°. Thus
on the span of these two root spaces, relative to a basis of root
vectors, Ad(m)co is given by the matrix

<ﬁ(m) 0 ><0 1> ~< 0 B(m)>
0 g'(m))\10/ \g(m) 0 )’

The matrix of Ad(m)oo on all of 1, is a sum of blocks of this type,
so det (I — Ad(m)o0),, = IT det <_ B}(m) —Bl(m)) ~ T (L— B(m)B"(m)).
And for our real m, B°(m) = B(m) = a(m), so

A7 (m)=0c(m)~* I 1 —a(m)a(m))=0or(m)™ [I (1 —a(m?)=4(m*)=4(Nm) ,
as desired. ]

4, Integration formulas. We need to develop integral for-
mulas that are adapted to integration over og-conjugacy -classes,
analogous to the familiar formulas for ordinary conjugacy.

Let T'= T} and consider the mapping Gr/Tx X Tk — Gr given
by (g, t)r— gtg~'. It has order equal to wé = |w(Gr, (THr)|. The
restriction of this map to Mg/Tr X Tk has order wi =|w(Mg, (THr)|.

The o-twisted analogues of these mappings are the map G¢/Tx X

¥ — G given by (g, t)— ¢°tg", and its restriction M;/Tr X T#—M,.

We calculate their orders: suppose g’tg~'=h’sh™, g, he G¢; s, te

. Taking norms, we find h'gt?9~'h = s®. Letting S be a set of
representatives for W(Gg, Tr), we see that ¢* = wsw™, for some
weS. Thus wh'geT,, ie., h'g=w't, some t'e¢T,. So s=
hgtg=h = wt "t " 'w = w Y tw, or Ut = wswe T SO
"t e Tx. Modulo Tk, this allows only finitely many possibilities
for ¢'. It is in fact easy to see that there are 2"~ possibilities for
t’, modulo Tk. The same analysis applies to M;, with the difference
that w must be in Mg, though the possibilities for ¢’ remain the
same. We record the result as

LEMMA 4.1. Let T = T}, for some i,j. The maps (g,1t)—
J°tg™, G¢/Tr X TR — Gc and its restriction to M/Tr X T# have

orders 2" 'wh and 2"~*wi, respectively.

Next we prove the o-twisted analogue of a familiar result
([3], Lemma 5.2; cf. [5], Theorem 1.1.4.4).

PrOPOSITION 4.2. If me M{ is such that 4°(m) = 0, then the
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map ni— mIln'mnTt is an analytic diffeomorphism Ng— Ng, with
Jacobian equal to det (Ad(m™)eo — I),.

Proof. Let mn,_,=1{0}, n, ={Xen:l[X, n] < n,.}. Then n;=
ma2m=2m, =221, = {0}. Letting 4, = Ad(m)o0, A, = —1I, we
can apply [5], Lemma 1.1.4.2. ]

Fix Haar measures on My, Ny, M., N¢, K, KN Gy, and use them
to define Haar measure on Gy by

[r@ag = |, sowakyamdna,

and similarly for G.
We apply [5], formula IT in §8.1.2, to M; and G and find that
for ¢ € C2(My), feCr(Gr),

|, smdm = % 5 i)

osisk 155=(¥)

(| ot det (A=) — 1. |t

2
75

|, r@ds = 3 wir

<izk

'gmi §  F(gtg7) | det (Ad(t) — D)y | dtdg .

T
Tl

Here m, g, t; are the Lie algebras of M, G, Ti, and we have sup-
pressed the subseript R on T}, M, G, t:, m, and g. For fixed ¢, all
the T#’s are conjugate in Gy, so T} in the second formula could be
replaced by any TY, or better yet by their average:

L\t
|, f@dg = 3. 3 <Z> ()™

ozizk 1555(¥)
A\, st det (aae — 1, atdg .
GITJ- T]-

Replacing ¢ by knm, with ke K N\ Gr, n € Ng, me Mp/(T}r, We see
the above integral equals

Lol o g(ﬂ) Flemaivtai=m=1)| det (Ad(t™) — Doy | didri
| det (Ad(t™) — D)yt |-| det (Ad(E) — Iy [Pdndl .
Now
| det Ad(t™) — D)yt |-] det (Ad(t™) — D]~

= |det (Ad(t™") — I), .| = 4(t)*.
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Collecting constants, if me Myp is conjugate to an element of
T:, we define 7(m) = (f) wh/wh. Then
4.1) S f@)dg = S S S r(m)f Genmn =T~ A(m) dmdnd .
KENGR JNRJMR
Next we turn to the o-conjugate situation. Let M} = {mtm:
me Mg, te(THe}, Mt = U; M}, G' = {g°mg: g€ G¢, me M?}. Using
Proposition 4.2 and an argument analogous to the one used to
prove the corresponding untwisted formulas ([2], Corollary 2, p.
94; [5], §8.1.2), we find that for fe C>(G*), the integral
I\ reonomnse 2(mydmandr
KINg Ju}

is a constant multiple of S f(g)dg. Moreover, from Lemma 4.1 we

see that the constant is 2" *w§/@2"*wi) = wi/wi. It works equally
well for any j, so, averaging, we find

I\t
S Fl@)dg = ( ) wﬁl/wég S S Fon mn -t 4°(m) dmdndk .
[ed 1 KJN¢gJm?
Combining all the G''s, we can write, for feCo(U; G,
(4.2) S f(g)dg = S S S (m) f (e'n*mn—%-") 4°(m)*d mdndl
KJN¢gJMc

’“)"wM/wG

where for m e M%, r(m) = r(Nm) = (7,

5. Integral operators. For feC>(G.), we express II(f)-A,
as an integral operator. If ¢¢ .57, k,c K,

I(f)o Ang(k,) = Sacf (9)Ang(kg)dg = gf (k3'9)Ang(g9)dg
- SKSNCSMC F (e mnk) Ang(mnk)dmdndi
= m F e mnk)do(m) 2 2(m) A op () dmdndl
= m F U nmn—k*)4°(m) 2(m) A op (k) dmdndk
= SKK,(kO, k)é()dk ,

where K;(k, k) is the operator-valued kernel

| [ fnomn-ie)aoom)o0m) d,dman



BASE CHANGE FOR GL(n, R) 199
To find the trace of this operator we use Hirai’s generalization ([3],
§4) of the usual procedure and integrate the kernel along the
diagonal and find the trace of the resulting operator, i.e.,
trace (II(f)oAy) = trace SKKf(k, k)dk
= trace[g I 4 f(k—lnamn—%v)mm):z(m)dmdndkoA,;]
KJN¢gJiMg
- g S g Fon mn %) 4°(m)05(m) dkdndm
McJN¢gJK
= rwnons,
Gc

where, using (4.2) and symmetrizing 4°-'63, we have 6%(h’gh™) =
05(g), for g, he G¢, and if te (THx

7(t) = ’i‘(t)”(l;)—lwx/wé 2 X 4 0g(wsts T w™)

T w
seSj

= >, >, 4 0y(wstsT'w™) .

(5.1)

The inner sum is over we W(Mg, TH\W(Gg, T}), and the outer sum
over se S} averages over the various T/’s. Also 6%(¢9) = 0 unless

ge UL, G
6. The character relation. We are now able to state:

THEOREM. Let w be an irreducible tempered represemtation of
GL (n, R), II its base change lifting. Let A, be an involution with
Apell(g) = II°(9)oAy.  The distribution

fr—trace(II(f)eAz)  (feC(GL(n, C)))

is given by a function 6% on GL (n, C), and the sign of Ay may be
chosen so that 05(g) = 6.(Ng).

Proof. The result is trivial for GL (1), and for GL (2) has been
done by Shintani [4]. For n = 8, all that remains to be shown is
the last identity, and, ignoring a null set, it suffices to consider
geGY. We fix A; as in §2.

By the familiar untwisted analogue of the computation in §35,
we can use (4.1) to calculate 4. (cf. [3]). For te(T}), we find
0.(t) = Zsesg, o470, (wsts'w™). The inner sum is over we
W{(Mg, (T}W\W(Gg, Tj)*. Also 6.(g) = 0 unless g € Mg~r.

We know from §5 that 63(¢g) = 0 unless ge UG*. Thus the
desired relation holds for g¢ U G, so we may suppose geG‘. By
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the invariance of ¢, and the o-conjugate invariance of 6%, we can
assume g =t € (T})g, so Ng = ¢

The result follows by comparing the above formula for 6.(Nt)=
0.(t*) with formula (5.1) for ¢°(t), and applying Proposition 3.1 and
formula (2.1). 1
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