Pacific Journal of

Mathematics

DIFFERENTIABLY k-NORMAL ANALYTIC SPACES AND
EXTENSIONS OF HOLOMORPHIC DIFFERENTIAL FORMS

LAWRENCE JAMES BRENTON




PACIFIC JOURNAL OF MATHEMATICS
Vol. 93, No. 2, 1981

DIFFERENTIABLY %£-NORMAL ANALYTIC SPACES AND
EXTENSIONS OF HOLOMORPHIC
DIFFERENTIAL FORMS

LAWRENCE BRENTON

In this paper the concept of normality for a complex an-
alytic space X is strengthened to the requirement that every
local holomorphic p-form, for all 0 < p < some integer 2, defined
on the regular points of X extend across the singular variety.
A condition for when this occurs is given in terms of a notion
of independence, in the exterior algebra 2%~, of the differen-
tials dF,, - -+, dF, of local generating functions F; of the ideal
of X in some ambient polydisc 4¥ € C¥. One result is that for
a complete intersection, “Z-independent implies (2 — 2)-normal”
(precise definitions are given below), which extends some ideas
of Oka, Abhyankar, Thimm, and Markoe on criteria for nor-
mality.

Recall that a complex space (X, %) is normal at a point xe X
if every bounded holomorphic function defined on the regular points
in a punctured neighborhood of x extends analytically to the full
neighborhood. This is equivalent to the condition that the ring &%,.
be integrally closed in its field of quotients, and except for regular
points 2 in dimension 1 the boundedness requirement is irrelevant:
if dim X > 1, x € X is normal < for all sufficiently small neighborhoods
U of ¢ the restriction of sections I'(U, &) —» I'(U — 3, &%) is an
isomorphism, for 3, the set of singular points of X. In 1974 A.
Markoe [6] observed that the basic wmodern ideas in the topic of
cohomology with supports gives a very simple criterion of normality
in terms of the homological codimension of the structure sheaf:

THEOREM (Markoe). Let (X, &y) be a reduced complex space with
singular set >.. Then Vxe X, if codh , 27y > dim, >, + 1, then X is
normal at x.

Here codh ,”; = max {k|3 germs f,, ---, f, in the maximal ideal
of 7%, such that vi <k, the coset f; + >};<;fiC%, 18 not a zero
divisor in the ring 7 ./>.;<: fiC%..}. For the standard concepts of
sheaf cohomology with supports and their relation to the algebraic
properties of the stalks the reader may consult [5], [8], [9] or [11].
This generalizes earlier results of Oka [7], Abhyankar [1], and Thimm
[10] for hypersurfaces and complete intersections.

At about the same time the present writer became interested in
the question of extending holomorphic differential forms across sub-
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varieties of analytic spaces in an effort to understand the local
contribution of singular points to the groups H%X, 2%), especially
for compact spaces where the dimensions of these groups are important
numerical invariants (see [2] and [3] for some results of this sort
for hypersurfaces). Since in particular a 0-form is just an analytic
function it seems natural to consider spaces with a higher degree of
“normality” and to extend and relate Markoe’s result to statements
about higher order differential forms. For instance we will see below
(Proposition 6) that if X is a complete intersection at each point,
then X is normal if and only if there are no loeal holomorphic 1-
forms supported on the singular set.

DerFINITION 1. Let (X, ¢7;) be a reduced complex subspace of a
domain D c C¥, with ideal sheaf % < 7,. By the sheaf of germs
of local holomorphic p-forms on X we mean the sheaf on X

Qy = 25/( AL + d A N\ 2%,

where d. % A 227! is the subsheaf of 2% consisting of those germs
of the form df A ¢*, fe %. For Uc X an open set, by a holo-
morphic p-form on U we shall mean a section on U of this sheaf.

DEFINITION 2. For XD as above and & a non-negative integer,
a point ¢ ¢ X is said to be differentiably k-normal if for any integer
p» <k and any sufficiently small neighborhood U of x, every holo-
morphic p-form w? defined on the regular points of U extends to a
holomorphic p-form @&® on all of U. X itself is differentiably k-normal
if each of its points is differentiably k-normal. That is, X is diffe-
rentiably k-normal if vp < k& the restriction of sections I'(U, 2%) —
r(u—73, 2% is surjective for all open sets U, where 3, is the
singular set of X.

REMARKS. It is clear that 2% is coherent and (hence) that Vk
the set 3, of points of X that are not differentiably %-normal is a
subvariety of X. If dim X > 1, then differentiably 0-normal is the
same as normal, and 323,23, ., 2-.-23. The adverb “differen-
tiably” is used here to distinguish the concept under view from that
of the “k-normality” of Andreotti and Siu [2]. There a space is
L-normal if the Lth gap sheaf 27[*! is equal to the structure sheaf
y—that is, if holomorphic functions always extend across sub-
varieties of dimension <k. I thank the referee for drawing my
attention to this terminology.

The main result of [3] has the consequence that if X is locally a
hypersurface, then X is differentiably k-normal but not differentiably



DIFFERENTIABLY %£-NORMAL ANALYTIC SPACES AND EXTENSIONS 263

(k+1)-normal for k=(codim >))—2. To give a concrete example, put
F(z, -- ‘y Zar) = (@)™ + -0 4+ (Bpr)™

for some integer m = 2, and let X c C"** be the Fermat cone defined
by FF=0. X has one singular point, the origin in C**!, and it is
easy to establish (by Corollary 5 below, for instance) that X is
differentiably (n — 2)-normal.

To show that X is not, however, differentiably (% — 1)-normal,
denote by U,, ¢ =1, ---, n + 1, the affine set {2, # 0} < C**', and define
a holomorphic (n — 1)-form w?™* on U, by

o /\ /\
W1 = (&) S (~ D) zda A - day e day - A dage
l#i

Here ™ means “omit this factor”, and o, = 0if (5,1,1,2, --- ¢ ---[---,
n + 1) is an even permutation of (1,2, ---,n +1),1 if an odd per-
mutation. Direct computation verifies that on U, N U;(z < j7),

07— 0f = Fyit 4+ dF N\ 9357

for

P = (= 1)z, " dz A - dz, - - sz\y co A s

and for

N N AN
Pt = (m — 1)“1(zizj)“'”l§] (=D uszde, A -+ dz;---dz; -+~ dz; - -
#1,7
/\ dzn+1 ’
where 7,; =0 if 1 <1< j, 1 otherwise. Thus the ! together
comprise a well-defined section ®w™* of 2%* on X — {0}.

But "' does not extend across 0. For if it did, then (since
C*+! is Stein) there would exist a globally defined (» — 1)-form @&"*
on C"*' satisfying, for all 4,

(*) O =@+ Fyr Tt + dF A\ 97
for some (n — 1)-, (n — 2)-forms 7, 22 on U,. Put

5 A~ AN
O t= D fudz A o dzy oo dy o0 N ARy

15k<isn+1

q/p".”_lz Z g dz/\...(/'i;...(i;.../\dz
7 <652 nat ikl 1 k 1 nt1

1

A~ A o
Prt = Z hipqrdzl/\ "'dzp"°dzq”°dz".. /\dz”+1’

12p<g<rsan+l

where the f’s are entire holomorphic functions on C**' and the g¢’s
and h’s are defined and homomorphic on U,. Then for 7 < j, equating
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AN N
coefficients of dz, A ---dz;,---dz; --- A dz,+, in (*) gives, on U,,

() fu= (CDRE) + By + = 1) S 2k

iid
for

(—=1)*hy,,; for 1<
ﬁm‘z = {(=1D'h;u; for 1 <Il<y.
(—1)"*hy; for 1> 3

Now let @ be an mth root of —1, and evaluate (**) along the
punctured line L, — {0}, for L, defined by z; = az,, 2, = 0 for l 1, j,
to conclude

(***) f‘l] — (_1)0ijaz2—m

on L, —{0}. Thus if m > 2, f;; cannot be defined at the origin, a
contradiction. If m = 2, then f;; = (—1)%%a on L, — {0}, while if
B # « is the other square root of —1, then similarly f;; = (—1)%g3
on Ly — {0}. Thus in this case also f;; cannot be defined at 0. This
contradiction shows that w"*' cannot be extended from X — {0} to
all of X, and hence that X is not differentiably (n — 1)-normal.

Actually, much more can be said about (% — 1)-forms on this
space X. For m,, ---, m,;, integers, with 0 < m; < m — 2 for all [,
define a holomorphic (» — 1)-form on X — {0} by

m
wzzl-",mmq = <E (zl)ml>wn—l .

By the same argument as above for w", @, } does not extend
across 0. In fact, the set {®, ...,», .} for all such indices m,, - - -, m,_,
forms a basis over C for the quotient of stalks 2%7,,/2%,s. That is,
if U is any neighborhood of 0 in X, then every holomorphic (7 — 1)-
form £ on U — {0} can be written uniquely

E'n—l — pa)n—l + 7771.—1

where p is a polynomial in z,, ---, 2,+, with constant coefficients and
of degree at most m — 2 in each variable 2, and where 7" is a
holomorphic (n — 1)-form on all of U. This example quite easily
generalizes to the Brieskorn varieties (z)? + --- + (,4)"*t = 0.
We want next to introduce a notion of independence of differential
forms, which is our main tool in studying differentiable k-normality.

DEFINITION 3. Let R be a commutative ring, let M be the free
R-module on generators d«t, ---, de”, and denote by A4*M the total
exterior algebra of M. A sequence @, ---, ®, € M is called k-inde-



DIFFERENTIABLY k£-NORMAL ANALYTIC SPACES AND EXTENSIONS 265

pendent over R if Vp <k and Vi < r, if

0} \ @, =3, 0} \ @;
i<t
for some wfcA’M, j =1, ---, 4, then Ip?te A#'M,j=1, ---, i, such
that

@ =Y, PN OQ; .

jsi

THEOREM 4. Let (X, &%) be a reduced subspace of a domain D
in C¥. Denote by .7 C &), the ideal sheaf defining X and by > the
set of singular points of X. Let x€ X and suppose that for some
integer k = 0,

(i) codh, 7y >dim,>, +k + 1, and

(ii) there exist gemerators F,, ---, F, of %, such that dFy, - --,
dF, are k-independent over .

Then for all integers v, ¢ with » +q =k + 1,

(F2%), = 0.

Proof. Without loss of generality assume that the functions F,
are defined throughout D and generate % at each point of D. Put
Xo=D, X, =V(F), X, =V, F), ---, X, = X, where V(F}, ---, F)
means the variety of F), ..., F, with ideal sheaf 3., F;7,. Fix
F<Ek+1 We will prove by induction on ¢ that v:

(*) QR P). =0 Vg+p=Fk.

The case ¢ = r, then, is the desired result.

If i =0, 2%, Q T = 2% ® T% is free, so (*) holds by the condition
q =k < codh o — dim, 3, ([9], Theorem 1.14). Now let ¢ > 0 and
assume inductively that S22 (0% ® %), =0 Vg + p =k'. We have
the complex

(0 @
Pir,;

(*%) O_HﬁXﬁm__i,giyiA@ﬁx__i)Qi,i_l@ﬁx__)...
p—1) (p)

o, 5
T R —— B R T —0,

— 25, Q%

where o Qﬁ}i_l®ﬁ’X——+Q§+il_ ,® % is induced by right wedge mul-
tiplication by dF;, and where 7 is the natural projection. Since
dF,, ---, dF; are at least (p — 1)-independent over &7, at z, (**) is
exact at . Hence for j =1, -.-, p — 1, the sequences

0 — im p%? — 24, ® P — im i), — 0

are exact at x, and at the last stage, so also is
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0—imp# ! — 2%, QT — 2%, QK T —0.
Taking 9#° at z, this yields
s S5, @ ) — SEFT(im 0,),

—_— %p+4—i+1(im pé]};il))z [
and

o —— 0, Q) Tr)y — (2%, Q Tx)s
— A (im Py%_,:l))m — e,

By the induective hypothesis, the first group in each of these triples
vanishes, so the induced maps

(2%, Q Ty) — 225 (im o), — 225 (im pfF”). —
— 2 (im pgr), — S (im pi). = (S5 Tx), = 0,

are all injective. Hence in particular 5£57(2%, ® &%), = 0. [

COROLLARY 5. Let XCDCC" be a complete intersection of
dimension n. Suppose that % C & has generators F,, ---, Fy_,
whose varieties meet transversally and are such that dFy, ---, dFy_,
are k-independent in any order over &y at each point of X. Then
X s differentiably (k — 2)-normal.

Proof. It is shown in [3] (Lemmas 1 and 2 and Remark 6) that
the single function F; is k-independent over ¢, at « < for some choice
of local co-ordinates 2, - --, 2% in D the derivatives 0F,/07!, - - -, 0F,/0z*
form a regular &7 .-sequence = codim,(3,; N X) =k at z, for >, the
singular set of the variety X; of F,. Since the V(F,) meet trans-
versally, >, = US*C: N X). Thus dim, Y, = max{dim,C,;, N X)} <
n — k = eodh ,” — k, at each point xe¢ X. By the theorem, then,

20% =0 Vp+q=k—1. Taking q =1 we conclude that 5~2'Q% =0
vp <k — 2. That is, for every open set U, H}(U, 2%) = 0. The con-
clusion now follows from the sequence

HYU, 22) — HYU — 3, Q%) — HXU, 03) .

REMARK. Taking g = 0 in the conclusion to Theorem 4 (respec-
tively, in its application in Corollary 5) shows that such spaces have
no local holomorphic p-forms supported on >, forp =10,1, ---, k + 1
(respectively, for p = 0,1, ---, k — 1). This observation suggests the
characterization of normality mentioned in the introduction:

PROPOSITION 6. Let x be a point of a reduced analytic space
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(X, &) such that X is a complete imtersection at x. Then X 1is
normal at x = Hy(U, Q%) = 0 V sufficiently small neighborhoods U of
x, for 3, the set of singular points of X.

Proof. Complete intersections have 0-independent generators.
Namely, if locally X is an n-dimensional subvariety of N-dimensional
polydise 4%, and if F,, ---, Fy_, generate the ideal of X in 4%, then
at the regular points of X near x the differentials dFy, ---, dFy_,
are independent over C. That is, if g dF; = >, 9,dF;, then the ¢g’s
are identically 0 most places in a neighborhood of z, hence everywhere.

Now Theorem 4 applies. X is normal at = codim, >, > 1=
(54305, = 0 = H(U, 2%) = 0V sufficiently small neighborhoods U of z.

Conversely, (#5'2%), = 0=dh 2% < codim, >, ([9], Theorem 1.14).
If codim, >, were equal to 1, this would mean that dh,2% = 0 and
2% . is free. But then 2 is a regular point of X, contradicting
codim, 3, = 1. (If dim X = 1, we should look at 5#5,2% throughout,
and at this point achieve not a contradiction but the assertion that
2 is regular, hence normal.) The alternative is codim, >, > 1, which
implies normality by the Oka-Abhyankar-Thimm-Markoe criterion, or
by Theorem 4.

Added in proof. It has recently come to the author’s attention
that similar results have been obtained by G.-M. Greuel, Der Gauss-
Manin-Zusammenhang isolierter Singularitdten wvon wvollstandigen
Durchschnitten Math. Ann., 214 (1975), 235-266. For isolated singu-
larities of hypersurfaces the topic was first considered from the
present point of view by Brieskorn, Die Monodromie der isolierten
Singularititen von Hywperflachen, Manuscripta Math., 2 (1970),
103-161.
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