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Let {(Xn, an)} be a sequence of pointed, locally compact,
finite-dimensional, nondegenerate, connected ANR's. It is
shown that the dirct l imit of the system

Xi — > Xί X {a2} a XίX X2 — > I i x I 2 X {α3} c Xx x X2 x X3

is homeomorphic to an open subset of R°° — lim Rn

9 R the
—>

reals. As a consequence, if / : X —> Y is a homotopy equiva-
lence between ANR's as above then lim fn: lim Xn -> lim F n

is homotopic to a homeomorphism.

A* Introduction* Infinite countable products of complete AR's
have been shown to be in most cases homeomorphic to either the
Hubert cube or a Hubert space: by combined results of Anderson
[1], West [9] and Edwards [2] the product Π X* is homeomorphic
to IL [0, l]i provided all the Xi are compact and nondegerate; simi-
larly, any product of countably many noncompact AR's of the same
weight is, topologically, a Hubert space (see [8]). The latter result
can be used to show that if (Xi9 at) are pointed, finite-dimensional,
σ-compact AR's then the space

( i ) Σ (-3Γ*, at) = {(Xi) 6 Π %i> %i — <*>i for almost all i)
is, in the product topology, homeomorphic to the incomplete linear
subspace l{ consisting of all eventually zero sequences in l2, the Hubert
space.

In this note we show that, under the additional assumption that
the X/s are locally compact, the space (i) considered in the direct
limit topology is homeomorphic to another familiar topological space,
namely R°°, the direct limit of finite products of R, the real line.
More generally, we have the following:

THEOREM. Let {(Xn, an)} be a sequence of pointed, locally compact,

finite-dimensional, connected ANR's having more than one point.

Then the direct limit of the system

Xx > Xx x {α2} dX1x X2 > X± x X2 x {α3} c Xλ x X2 x Xz

is homeomorphic to an open subset of R°°.

For results concerning the topological properties of R°° we refer
the reader to [4] and [5]. It is shown there that the iu°°-manifolds
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posess many of the properties of Z2-manifolds; in particular, if / is a
homotopy equivalence between iu°°-manifolds then / is homotopic to a
homeomorphism. Combined with a result of Hansen, Theorem 6.2 of
[3], this gives the following.

COROLLARY. If f: X —• Y is a homotopy equivalence betwee locally
compact, finite-dimensional, connected ANR's having more than one
point, then lim /*: lim X" —-> lim Yn is homotopic to a homeomorphism.

Despite the above-mentioned similarity of R°° and l2 manifolds
no intrinsic characterization of i2°°-manifolds corresponding to the
characterizations of l2 and Q-manifolds (see [8]) is known. The
motivation of this paper was to show that the direct limit operation
leads naturally to such manifolds (see also the Proposition in § C).
Earlier, it was shown by Henderson [6] that taking products of R°°
with locally compact, finite-dimensional ANR's yields open subsets of
R°°. Our result generalizes Henderson's. However, while Henderson's
technique involved the linear structure of R00 (and has since been
applied to studying factors of other linear topological spaces) our
proofs involve merely the construction of embeddings from finite-
dimensional compacta into products of ANR's.

B* Notation and lemmas* In this section all spaces are sepa-
rable and metric. If dt is the metric on Xi9 i <̂  n, we take max
{di(xi, ViY i t* n} as the metric o n l j X ••• x l r By I and P was
denote [0, 1] and the Λ-fold product of [0, 1], respectively. If k = 0,
P is the singleton.

A map (= continuous function) g: X —> Y is said to be approxi-
mable by elements of the family ά^ of maps X —> Y if for any ad-
missible metric d for Y there is an fe^~ such that d(f, g) < 1. (If
X is compact this coincides with the concept of being in the closure
of ^ in the compact—open topology.)

We say that A c X is a Zk-set, k ̂  0, if any map P —> X can
be approximated by maps whose images are disjoint from A. A map
whose image is a Zfc-set will be called a Zfc-map.

We shall consider spaces X having the following property, some-
times called the disjoint ά-cube property.

(*)fc Any map P x {1, 2} —• X is approximate by maps sending

P x {1} and P x {2} to disjoint sets.

The following generalizes the fact that R2k+1 has property (*)*.

LEMMA 1. // Xlf X2, , X2k+1 are locally contractible spaces with
no isolated points then Xx x x X2k+1 has the property (*)fc.
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For a proof see [8].

LEMMA 2. // X is complete and satisfies (*)fc then any map
Ik —> X is approximable by Zk-maps.

The proof is the same as that of Remark 3 of [7].

LEMMA 3. Let X be an ANR satisfying (*)*., let A and B be
disjoint compacta of dimension ^ k, and let Xo be a closed Zk-set in
X. Then any map AUB -» X is approximable by maps g: A U B —• X
satisfying g{A) Π g(B) = 0 and g(A U B) Π Xo = 0 .

Proof. Since X is an ANR each map A\J B -* X can be approxi-
mated by compositions of the form A U B —• 2£ —> X, where if is a
polyhedron of dimension <; dim (A U ί ) . Thus, we may assume that
A and B are compact polyhedra, and the result follows from the fact
that in this case A and B are finite unions of cells of dimension <̂  k.
(Details are left to the reader; cf. the proof of the next result.)

PROPOSITION 4. Let A and X be locally compact spaces, let Ao

be a closed subset of A and let f:A->Xbe a map such that f(A0)
is a closed Zk-set. If dim A ^ k and X is an ANR satisfying (*)*.,
then f is approximable by Zk-maps g:A-*X such that g\A0 = f\A0,
g(A\A0) Π g(A0) = 0 , and g\(A\AQ) is one-to-one.

Proof. A proof is given in [7] for the case k— oo and Ao=0. The
proof of the general case is similar; we include it for completeness.

Fix a metric d0 for X. Let d ^ d0 be a complete metric for X
and let {Ai}ieN be a family of compact subsets of A\A0 such that for
any pair x and y of distinct points of A\A0 there are i, jeN with
xeAif yeAjf and AiΠAj= 0 . Let {fi}ieN be a dence subset of
C(Ik, X) consisting of Z*-maps such that /,(/*) n /(A) = 0 (see
Lemma 2). With ί7 = {g eC(A, X): # | Λ = /I A) it follows from
Lemma 3 and [7, Lemma C] that for each i, j eN with Af Π A, = 0 ,
the set

Gi,3;ι = {geF: g(A%) n ίKA) = 0 and

g(A, U Ay) Π [/,(/*) U /(A)] = 0}

is dense and open in JP. (We equip F with the sup metric d induced
by d.) Since (F, d) is complete it follows that G = Π {G<fi,ι: At Π A3 =
0 , ZeJV} is dense in F. This completes the proof since feF and
any geG satisfies the desired conditions.

COROLLARY 5. If in Lemma 4 it is additionally assumed that
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/ is proper and f\A0 is an embedding, then the approximations
g: A~^ X can be taken to be closed Zk-embeddings.

Proof. Use the facts that a map sufficiently close to a proper
map of locally compact spaces is itself proper and that one-to-one
proper maps are closed embeddings.

REMARK. If Ao = 0 and X = R2k+1 then the above corollary re-
duces to the classical Menger-Nδbeling embedding theorem.

LEMMA 6. Let Xlt * ,Xfc be nondegenerate, connected ANR's.
Then the singletons are Zk-sets in Xx x x Xk+1. Accordingly,
XQ x {b} is a Zkset in Xo x X1 x x Xk+ly for any space Xo and
any point b e Xx x x Xk+i-

Proof. (By induction on k.) Let b = (blt , bk+1) eX1 x x
•X*+i, / = (/i, , Λ+i): /* -* Xi x x -ϊi+i and ε > 0 be given. Let
j ^ ~ be a triangulation of P so fine that for each simplex σ e ^ 7
fk+1(σ) is contractible in Xfc+1 within a set of diameter less than ε.
Let ^'k-1 be the (k — l)-skeleton of ^ . By the induction hypothesis
and [7, Lemma C] we may assume without loss of generality that
(/i, •• ,Λ)(|2T*-1|) misses (blf .. , U ; cf. proof of 4.

Now, using the ε-contractions of fk+1(σ), we may alter / on lc-
dimensional simplices, modulo their boundaries, so that the resulting
map g: P —> X1 x x Xk+1 is within ε of / and satisfies (a) gt(P) =
fi(Ik), iίkk, and (b) for each σe^Γ\yk~1 there is a point pσeXk+1

with

g(σ) c [(/,, -, fk)(dσ) x Xk+1] U [(Λ - , Λ)(α) x {pσ}] .

Since Xfc+1 has no isolated points, all the pσ's can clearly be chosen
distinct from bk+1. Thus, g is an ε-approximation to / whose image
misses 6.

Finally, we need the following.

LEMMA 7. Let A be a locally compact space and let Ao be a closed
subset of A. Then any proper map f:A0—> [0, 1) has a continuous
extension f:A—> [0, 1) which is also proper.

Proof. Let AU{°°} be the one point compactification of A, and
extend / to g: Ao U {°°} —> [0, 1] by defining 0(00) = 1. Letting
g: A U {°°} —> [0, 1] be an extension of g we may take f(a) = h(a)g(a),
where fciU {00} -• [0, 1] is a map with h~\l) = 4 0U {<*>}.
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C* Proof of the theorem* The theorem follows immediately
from Lemmas 1 and 6 and the following.

PROPOSITION. Let {Xk; ik) be a direct system of closed embeddings
ik: Xk —> Xk+i of locally compact, finite-dimensional ANR's. Assume
that for any positive integers k, p there is an integer I > k such
that Xι has property (*)p and iι_λo . . . o%k{χk) is a Zp-set in Xt. Then,
lim {Xk; ik} is homeomorphic to an open subset of ϋ?°°.
—>

Proof. Let dk = dim Xk. Passing to a subsequence, if necessary,
we may assume t h a t

(a) ik(Xk) is a ZBdfc-set in Xk+1 and
(b) Xk+1 has property (*)3iA. and, hence, dk+1 >̂ Mk.

Let J = [-1 , oo) and let j k : JM*-i -> JM*-i x (0, 0, - -, 0) c J3dk be the
natural inclusion. We shall inductively construct manifolds with
boundary Mk in ( — 1, oo)M*-i and closed embeddings fk:Mk—>Xk and
gk: Xk —> Mk+1 such that, for each k,

(c) Mk+1 is a neighborhood of jk(Mk), and
(d) the following diagram commutes.

Assume {{Mk, fk, gk)} have been constructed. It is then clear that
bot lim {Xk; ik) and lim {Mk; jk} are homeomorphic to the direct limit

of the system Mo %> Xo -^ M1 ̂  X1 ^ M2 Λ . . . . Also, it is clear that

lim {Mk; jk} is homeomorphic to lim {Int Mk; jk} which is open in

lim {( — 1, oo)8d*-i; jk} ^ R°°. Thus, lim {Xk; ik} is homeomorphic to an

open subset of R°°.
We now give the construction of the embeddings fk and gk.

Assuming, without loss of generality, that Xo = R°, the singleton,
we take for fQ the identity. Having established fk consider the
closed embedding jkfir1: im{fk) —> JBdk. By Lemma 7 we can extend
jkf'1 to a proper map Xk —• Jsdk which we may then, by 1 and 6,
alter so as to get a closed embedding gk: Xk —> Jzdk coinciding with
ύkfh1 on im(fk). Clearly, we may adjust gk so that in addition
im(gk)c(-l, oo)w*.

The set im(gk) being a closed ANR subset of ( — 1, oo)3^? there
is a manifold with boundary Mk+1 contained in ( — 1, ooγdk which is
topologically closed in J3dk, contains a neighborhood of im(gk) in
( — 1, oo)3^, and which properly retracts to im(gk). Then ihgk

ι: im{gk) —>
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Xk+1 extends to a proper map Mk+1-*Xk+1 which we again may-
alter modulo im(gk) to get a closed embedding fk+1: Mk+1 —> Xk+1 coin-
ciding with ikgk

x on im(gk). This completes the inductive step and
the proof of the proposition.
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