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Let I be a von Neumann algebra with a faithful,
normal, tracial state τ and H°° a finite, maximal, subdia-
gonal algebra in M. If lfgp<sfgoo, then there is a one-
to-one correspondence between left-(resp. right-) invariant
subspaces of the noncommutative Lebesgue space Lp(M,τ)
and those of L (Af,τ).

1* Introduction* Let M be a von Neumann algebra with a
faithful, normal, tracial state τ and let H°° be a finite, maximal,
subdiagonal algebra in M. A number of authors have investigated
the structure of the invariant subspaces for H°° acting on the
noncommutative Lebesgue space LP(M, τ) (cf. [3], [4], [5] and [6]).
In [6], we showed that, if Tt is a left-(resp. right-) invariant
subspace of LP(M, τ), l ^ p < ° ° , then S3Ϊ is the closure of the
space of bounded elements it contains.

In this paper, we shall show that, if 1 ^ p < s ^ °o, then there
is a one-to-one correspondence between left- (resp. right-) invariant
subspaces ffllp of LP(M, τ) and left- (resp. right-) invariant subspaces
m8 of L8(M, τ), such that 2K. = 2RP Π L'(M9 τ) and 2RP is the closure
in LP(M, τ) of SPΐ8. This is of course true in the weak*-Dirichlet
algebras setting (cf. [2, p. 131]) and this is attractive to study the
structure of the invariant subspaces of LP(M, τ).

2. Let M be a von Neumann algebra with a faithful, normal,
tracial state τ. We shall denote the noncommutative Lebesgue
spaces associated with M and τ by LP(M, τ), 1 <: p < oo (cf. [7]).
As is customary, M will be identified with L°°(M, τ). The closure
of a subset S of LP(M, τ) in the ZAnorm will be denoted by [S]p\
[JS]«> will denote the closure of S in the σ-weak topology on
L~(M, τ).

DEFINITION 1. Let H°° be a σ-weakly closed subalgebra of M.
containing the identity operator 1 and let Φ be a faithful, normal
expectation from M onto D = if00 Π jEΓ̂ Xff00* = {α*: a? eϋ00}). Then
H°° is called a finite, maximal, subdiagonal algebra in M with
respect to Φ and τ in case the following conditions are satisfied:
(1) H°° + H°°* is σ-weakly dense in M; (2) Φ(^) = Φ(x)Φ(y), for all
a, yeH°°; (3) ίZ"°° is maximal among those subalgebras of M satisfy-
ing (1) and (2); and (4) τ°Φ = τ.
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For 1 <: p < oo, the closure of H°° in LP(M, τ) is denoted by Hp

and the closure of Ho°° = {xeH°°:Φ(x) = 0} is denoted by Ho

p.

DEFINITION 2. Let 3ft be a closed (resp. σ-weakly closed) sub-
space of LP(M, τ) (resp. L°°(M, τ)). We shall say that 3ft is left-
(resp. right-) invariant if iϊ°°3ft £ 3ft (resp. 3ftiJ°° £ 3ft).

The following theorem shows that, in considering left- (resp.
right-) invariant subspaces, it sufficies to consider left- (resp. right-)
invariant subspaces of If(M, τ)9 or alternatively, σ-weakly closed
left- (resp. right-) invariant subspaces of L°°(M, τ). The method in
the proof is based on a facterization theorem, that is, if k is in M
with inverse lying in U(M, τ), then there are unitary operators ulf

u2 in M and operators au a2 in H°° with inverses lying in H2 such
that k = Ufa — a2u2 ([6, Proposition 1]).

THEOREM 1. Suppose 1 <; p < s ^ oo.
(1) If 3ft is a left- (resp. right-) invariant subspacee of LP(N, r),

then 3ft Π LS(M, τ) is a left- (resp. right-) invariant subspace of
L°(M, τ) and 3ft - [3ft Π LS(M, τ)]p.

(2) If 3ft is a left- (resp. right-) invariant subspace of LS(M, τ),
then [3ft]p is a left- (resp. right-) invariant subspace of LP(M, τ)
and 3ft = [2ft], n LS(M, τ).

Proof. It sufficies to consider the assertion for left- invariant
subspaces.

(1) Let 3ft be a left-invariant subspace of LP(M, τ). It is clear
that 3ft Π LS(M, τ) is a left-invariant subspace of LS(M, τ). By [6,
Theorem], we have 3ft = [3ft Π L°°(M, τ)]p and so

3ft = [3ft Π L"(Λf, τ)\ £ [3ft n L*(M, τ)]p £ 3ft .

Therefore 3ft = [3ft n LS(M, τ)]p. This completes the proof of (1).
(2) Let 3ft be a left-invariant subspace of Ls(My r). It is

clear that [3ft]p is a left-invariant subspace of LP(M, τ). Now, if
the assertion (2) in the case s = oo is proved, then [2ft Π L°°(M, τ]p Π
L~(M, τ) - Wl Π L~{M9 τ). By (1),

[3ft]p n L*(M, τ) - [[3ft], n L-(M, τ)]s = [[9JI n L»(M, τ)]p Π L~(M, τ)]s

= [2ft n L~(M, T)]. = 3ft .

Therefore, suppose that s = oo. Let 2ft be a left-invariant subspace
of L"(M, τ) and put 3K = [3ft]p Π L%M, τ). It is clear that 3ft £ 2R.
If 2ft g TO, then there exist x e TO/2ft and a e L\M, τ) such that
τ(ax) = 1 and τ(ατ/) = 0 for every yeWl.
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( i ) Case 2 ^ p < °°. Define the number q by the equation
1/p + 1/q = 1. Let a — v\a\ be the polar decomposition of a. Let
/ be the function on [0, oo) defined by the formula f(t) = l, 0<^t<^l,
f(t) = 1, t > 1, and define k to be /(|α| 1 / p) through the functional
calculus. Then note that keL°°(M,τ) and k-'eL^M, τ)aL2(M, τ).
By [6, Proposition 1], we may choose a unitary operator u in
L°°(M, τ) and an operator 6 e H°° such that k = bu and δ"1 e iϊ 2. Since
^ G i W τ ) , by [6, Proposition 2], Zr1 e LP(M, τ) Π # 2 = H9 and
note t h a t ab = v\a\1/q\a\1/pku* eLq(M, r ) , because |a\ 1 / pk eL°°(M, τ ) .

Since 3ft is left-invariant, τ(aby) = 0 for every yeWl and so τ(aby) =
0 for every y e [2K]P. On the other hand, δ"1^ 6 jff»SR c [SR]P - [SK]P

and so τ(αα ) = τiabb^x) = 0. This is a contradiction. Thus SŴ SDΐ.
(ii) Case I ^ p < 2. Define the numbers q and r by the

equations 1/p + 1/̂  = 1 and 1/r + 1/2 = 1/p. Put & = /(|α|1 / 2), where
/ is the function in (i). By [6, Proposition 1], there are a unitary
operator u in L°°(M, τ) and an operator δ e H°° with inverse lying
in H2 such that k = bu and note that ab is a nonzero element in
L2(M, τ). Also, let αδ^^ ' lαδl be the polar decomposition of ab.
Put fc' = /(|αδ|2 / r), where / is the function in (i). Since |αδ| 2 / re
Lr(M,τ)(zL\M,τ), by [6, Proposition 1], there exists an operator
c in H°° with inverse lying in Hr such that abc is a nonzero element
in Lg(M, τ). Since 3ft is left-invariant, we have τ((abc)y) = τ{a(bcy)) —
0, for every yefΰl, and so τ(abcy) = 0 for every # e [Wl]p. On the
other hand, since (δc)"1 = c^δ"1 e HΉ2 c I P , (δc)"1^ e Hpm c [2H], =
[M]p and so τ(α«) = τiabcφc^x) = 0. This is a contradiction. Thus
3ft = Si.

This completes the proof of (2).

Next we shall consider the structure of doubly invariant sub-
spaces and simply invariant subspaces of LP(M, τ), 1 ^ p ^ oo.

DEFINITION 3. Let 2ft be a closed subspace of LP(M, τ), l<,p£oo.
(1) 3ft is said to be left (resp. right) doubly invariant if

(if00 + H"*)m £ 3ft (resp. 3ft(if°° + H00") S 3ft).
(2) 3ft is said to be left (resp. right) simply invariant if

[i?o~3ft]p £ 3ft (resp. [WIHS°]P £ 3ft).

By [5, Theorem 4.1] and Theorem 1, we have the following
theorem.

THEOREM 2. Let 3ft be a closed subspace of LP(M, τ), l ^ p ^ °°.
Then 3ft is a left (resp. right) doubly invariant subspace of LP(M, τ)
if and only if there exists a projection e in M such that 3ft = LP(M, τ)e
(resp. eLp(M, τ)).
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In [3], Kamei has shown the simply invariant subspace theorem
for antisymmetric finite subdiagonal algebras in case p = 1, 2. Also,
in [[5], we characterized the simply invariant subspace for H°° in
LP(M, τ), 1 ^ p <* °°, when H°° is determined by a trace preserving
ergodic flow. However, by Theorem 1 and [3], we have the follow-
ing theorem.

THEOREM 3. Let ίΰl be a closed subspace of LP(M, τ), l g p ^ o o .
// H°° is antisymmetric, that is, D = CΊ, then W is a left {resp.
right) simply invariant subspace of LP(M, τ) if and only if there
is a unitary operator u in M such that W==Hpu (resp. uHp).
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