Pacific Journal of Mathematics

NEW CONDITIONS FOR SUBNORMALITY

TAVAN THOMAS TRENT

Vol. 93, No. 2

April 1981

NEW CONDITIONS FOR SUBNORMALITY

TAVAN T. TRENT

The purpose of this paper is to establish some new characterizations of subnormality. One of these characterizations is interesting, in that the conditions are applied to "one vector at a time". This type of criterion is applied to show that verifying subnormality can be reduced to considering the restrictions of the operator to its cyclic invariant subspaces.

Denote the bounded linear operators on a separable Hilbert space H by B(H). An operator $A \in B(H)$ is called subnormal if there exists an operator $N \in B(H \oplus H)$ so that N is a normal operator, $H \oplus 0$ is invariant for N and the restriction of N to $H \oplus 0$ equals A [8]. Some previous intrinsic characterizations of subnormality can be found in [2], [7], [8]. Also a summary of these results appears in [5].

An operator $T \in B(H)$ is called hyponormal if $T^*T - TT^* \ge 0$. It is easy to see that T is hyponormal if and only if $||Tx|| \ge ||T^*x||$ for all x in H. By a theorem of Douglas [6], this is equivalent to the existence of an operator $K \in B(H)$ satisfying $||K|| \le 1$ and $T^* = KT$. This fact was explicitly brought to the author's attention in [3].

Now the subnormal operators comprise a subset of the hyponormal ones. Thus the question arises as to whether the contraction operator K relating T^* and T, as above, has properties which enable one to tell whether T is not only hyponormal, but subnormal as well. The following example shows that this is not the case. Let K, T, and S denote Toeplitz operators with symbols \overline{z}^2 , $\overline{z} + z^3$, and z, respectively. (Here z stands for the identity function on the boundary of the unit disc.) Then $T^* = KT$ and $S^* = KS$, but S is subnormal and T is not [cf. 1]. The example for T comes from [4].

However if S is subnormal then so is S^n for $n = 0, 1, 2, \cdots$. Hence for $n = 0, 1, 2, \cdots$ there exist contractions $K_n \in B(H)$ with $S^{*n} = K_n S^n$. Also it is known that there are hyponormal operators T, which are not subnormal, with T^n hyponormal for $n = 0, 1, \cdots$ [13]. One might ask for conditions on the K_n guaranteeing that if $T^{*n} = K_n T^n$, $n = 0, 1, \cdots$, then T is subnormal. The following theorem provides these conditions.

THEOREM 1. Let $T \in B(H)$. The following conditions on T are equivalent.

(a) T is subnormal.

(b) There exists a unitary operator $U \in B(H \bigoplus H)$ such that for $n = 0, 1, \dots T^{*n} = P_H U^n T^n$, where P_H is the orthogonal projection of $H \bigoplus H$ onto $H \bigoplus 0$.

(c) For $n = 0, 1, \cdots$

$$T^{*n} = \left[\int_{\partial D} e^{\operatorname{int}} dQ(t)\right] T^n$$

where Q is a positive operator measure (denoted by POM) defined on the boundary of the unit disc, ∂D .

(d) There exists a sequence of operators $K_n \in B(H)$ satisfying $T^{*n} = K_n T^n$ for $n = 0, 1, \cdots$. Moreover if we define

$$L_n = egin{cases} K_n & n \geq 0 \ K_n^* & n < 0 \end{cases}$$

then for any finite set $\{x_0, x_1, \dots, x_n\}$ contained in H,

$$\sum\limits_{j,k\geq 0}^n \left\langle L_{j-k} x_{j} , \, x_k
ight
angle \geq 0$$
 .

(e) There exists a sequence of operators $K_n \in B(H)$ satisfying $T^{*n} = K_n T^n$ for $n = 0, 1, \cdots$. Moreover if we define

$$L_n = egin{cases} K_n & n \geqq 0 \ K_n^* & n < 0 \end{cases}$$

then for each $x \in H$ and each $n = 0, 1, \cdots$ the matrix $[\langle L_{j-k}x, x \rangle]_{j,k \ge 0}^n$ is positive definite.

Proof. (a) \Rightarrow (b). Let N be a normal extension of T acting on $H \bigoplus H$. Since the kernel of N reduces N we may write $N = N_1 \bigoplus 0$ acting on $(\ker N)^{\perp} \bigoplus \ker N$, where N_1 is normal and one-to-one. By normality, N_1 is also densely ranged, so if $N_1 = U_1|N_1|$ is a polar decomposition of N_1 , then U_1 is unitary. Let V_1 be any unitary operator in $B(\ker N)$ and define $U = U_1 \bigoplus V_1$. Thus N = U|N| where $U \in B(H \bigoplus H)$ is unitary. By normality U_1 commutes with N_1 , thus U commutes with N. Computing

$$N^{*n} = (U|N|)^{*n} = U^{*n}|N|^n = U^{*2n}(U|N|)^n = [U^{*2}]^n N^n$$

Projecting onto $H \bigoplus 0$ we see that (b) holds.

(b) \Rightarrow (c). By the spectral theorem $U^n = \int_{\partial D} e^{int} dE(t)$, *n* an integer, for a projection valued measure *E* defined on ∂D . Hence for $n = 1, 2, \cdots$

$$T^{st n} = P_H U^n P_H T^n \ = \left[\int_{oldsymbol{i} D} e^{ ext{int}} \, dQ(t)
ight] T^n$$

where $Q(t) = P_{H}E(t)P_{H}$ is a POM on ∂D . (c) \Rightarrow (d). By hypothesis we may choose

$$K_n = \int_{\partial D} e^{\mathrm{int}} dQ(t)$$
 for $n = 0, 1, \cdots$.

Then

$$K^*_{*} = \int_{\partial D} e^{-\mathrm{int}} \, dQ^*(t) \, = \int_{\partial D} e^{-\mathrm{int}} \, dQ(t) \; .$$

Hence

$$L_n = \int_{\partial D} e^{\operatorname{int}} dQ(t)$$
 for all integers n .

Take any finite subset $\{x_0, \dots, x_M\}$ of *H*. Let $\{\mathcal{A}_p\}_{p=1}^n$ be any partition of ∂D and choose $e^{it_p} \in \mathcal{A}_p$.

Then for any fixed p

$$\sum_{j,k\geq 0}^M e^{ijt_p}e^{-ikt_p}\langle Q(\varDelta_p)x_j, x_k
angle = \left\langle Q(\varDelta_p)\sum_{j=0}^M e^{ijt_p}x_j, \sum_{k=0}^M e^{ikt_p}x_k
ight
angle \geq 0 \; .$$

Summing over p and interchanging the orders of summation, we get

$$\sum_{j,k\geq 0}^{M}\sum_{p=1}^{n}e^{i(j-k)t_{p}}\langle Q(\varDelta_{p})x_{j}, x_{k}
angle \geq 0$$
.

The innermost sum is a Riemann sum for $\int_{\partial D} e^{i(j-k)t} d\langle Q(t)x_j, x_k \rangle$. We may conclude that

$$\sum\limits_{j,k \geqq 0}^M \left\langle L_{j-k} x_j, \, x_k
ight
angle = \sum\limits_{j,k \geqq 0}^M \int_{\partial D} e^{i(j-k)t} d \left\langle Q(t) x_j, \, x_k
ight
angle \geqq 0 \; .$$

 $(d) \Rightarrow (e)$. For any x in H and any finite subset $\{t_0, \dots, t_M\}$ of complex numbers, denote $t_j x$ by x_j and apply (d).

(e) \Rightarrow (d). By a result of Herglotz (see [9], p. 125), the hypotheses say that $\{\langle L_n x, x \rangle\}_{n=-\infty}^{\infty}$ is a trigonometric moment sequence for a positive Borel measure μ_x on ∂D , whose total variation is $\langle L_0 x, x \rangle = ||x||^2$. Thus

(1)
$$\langle L_n x, x \rangle = \int_{\partial D} e^{\operatorname{int}} d\mu_x(t) \text{ for } n = 0, 1, \cdots$$

Fix x in H. For each Borel set $\varDelta \subset \partial D$ define the positive form $Q(\varDelta)$ by

$$\langle Q(\varDelta)x,\,x
angle = \int_{\varDelta} 1\,d\mu_x(t)\;.$$

Extend this form to a bilinear form on H by polarization. The bilinear form is bounded since the positive form is. So the positive operator $Q(\Delta)$ is defined and $Q(\Delta)$ is in B(H).

By polarization and (1) we have

$$\langle L_n x, y
angle = \int_{\partial D} e^{ ext{int}} \, d \langle Q(t) x, y
angle$$

for x, y in H. Thus

$$\langle T^{*n}x, y \rangle = \langle L_n T^n x, y \rangle = \int_{\partial D} e^{\operatorname{int}} d \langle Q(t) T^n x, y \rangle .$$

Thus (c) holds and so (d) must.

 $(d) \Rightarrow (a)$. Let $\{x_0, \dots, x_n\}$ be any finite subset of H. By (d)

$$\sum\limits_{j,k \geq 0}^n \left\langle L_{j-k} T^j x_j, \ T^k x_k
ight
angle \geq 0$$
 .

Now if $k - j \ge 0$,

$$egin{aligned} &\langle L_{j-k}T^jx_j,\;T^kx_k
angle &= \langle T^jx_j,\;K_{k-j}T^{k-j}T^jx_k
angle \ &= \langle T^jx_j,\;T^{*k-j}T^jx_k
angle \ &= \langle T^kx_i,\;T^jx_k
angle \;. \end{aligned}$$

A similar result follows when k - j < 0, thus

$$0 \leq \sum\limits_{j,k \geq 0}^n \left\langle L_{j-k} T^j x_j, \ T^k x_k
ight
angle = \sum\limits_{j,k \geq 0}^n \left\langle T^k x_j, \ T^j x_k
ight
angle \;.$$

It follows from the Bram-Halmos criterion that T is subnormal [2].

For invertible operators, (d) is essentially Embry's condition [7]. In both cases "polar coordinates" are used. For Embry's the measures are supported on [0, 1] (radial) and in our case the relevant support set is ∂D (angular).

Condition (e) of Theorem 1 gives a criterion for subnormality which involves looking at only one vector of H at a time. A similar related result is due to Lambert [11]. As a consequence of this type of criterion, we have the following corollaries.

Fix $S \in B(H)$. Denote the closed linear span of $\{S^k x : k = 0, 1, \cdots\}$ by H_x .

COROLLARY 1. S is subnormal if and only if for every x in a dense linear manifold of H the restriction of S to H_x is subnormal.

Proof. The necessity of the condition is trivial. Let \mathscr{D} denote the dense linear manifold of H given in the hypotheses and let $S|_{H_x}$ denote the restriction of S to H_x . If $S|_{H_x}$ is subnormal for all x in \mathscr{D} , then so is $(\lambda - S)|_{H_x}$. For all large λH_x is invariant for $(\lambda - S)^{-1}$.

Thus without loss of generality we assume that S is invertible and that

$$(S|_{H_x})^{-1} = S^{-1}|_{H_x}$$
.

Fix x in \mathscr{D} . Since $S|_{H_x}$ is subnormal there exist contractions B_n in $B(H_x)$ such that

$$P_{H_x}S^{*n}|_{H_x} = B_nS^n|_{H_x}$$
 for $n = 0, 1, \cdots$

So

$$P_{H_x} S^{*n} S^{-n}|_{H_x} = B_n \; .$$

By (e) of Theorem 1 applied to x and B_n we see that

$$[\langle S^{*j-k}S^{k-j}x, x \rangle]_{j,k \ge 0}^n$$
 is positive definite

for $n = 0, 1, \dots$. But $S^{*n} = (S^{*n}S^{-n})S^n$, so (e) of Theorem 1 now shows that S is subnormal.

COROLLARY 2. N is normal if for each x in a dense linear manifold of H. We have $N|_{H_x}$ is normal.

Proof. Let \mathscr{D} denote the dense mainifold. For x in \mathscr{D} , $N|_{H_x}$ normal implies that

$$||Nx|| = ||P_{H}N^{*}x|| \le ||N^{*}x||$$
.

But Corollary 2 says that N is subnormal, thus hyponormal. Hence for x in \mathscr{D} .

$$||Nx|| = ||N^*x||$$
.

Since N and N^* are continuous, the proof is complete.

An observation due to R. L. Moore might be of interest. Let U be the unilateral shift of infinite multiplicity. In contrast to the result of Corollary 2, by model theory every cyclic normal operator of norm less than one can be obtained as the restriction of U^* to a (cyclic) invariant subspace.

Using Corollary 1 and the fact that cyclic subnormal operators correspond to compactly supported Borel measures [2], it might be possible to find "functional" criteria for classes of subnormal operators. As a modest example motivated by a function used in [10], we have the following result.

THEOREM 2. Let $S \in B(H)$ and $||S|| \leq 1$. S is an isometry if and only if for each x in H the function

 $\phi_x(z) = (1 - |z|^2) \|(1 - \overline{z}S)^{-1}x\|^2$ is harmonic in the unit disc.

The proof follows by an easy computation.

We wish to thank R. L. Moore for his example and Warren Wogen for his suggestion that Theorem 1 which was originally proved for invertible operators should hold in general.

References

1. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J., **43** (1976), 597-604.

2. J. Bram, Subnormal operators, Duke Math. J., (1955), 75-94.

3. K. Clancey, Seminormal operators, lecture notes, University of Georgia, 1978.

4. K. Clancey and B. Morrel, On the essential spectra of some Toeplitz operators, Proc. Amer. Math. Soc., 17 (1966), 367-379.

5. J. Conway, Lecture notes on subnormal operators, University of Indiana, 1978.

6. R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.

7. M. Embry, Generalization of the Halmos-Bram criterion for subnormality, Acta Scien. Math., (Szeged) **35** (1973), 61-64.

8. P. Halmos, Normal dilations and extensions of operators, Summa Bras. Math., (1950), 125-134.

9. ____, A Hilbert Space Problem Book, Van Nostrand, New York, 1967.

10. T. L. Kriete and T. Trent, Growth near the boundary in $H^2(u)$ spaces, Proc. Amer. Math. Soc., **62** (1977), 83-88.

11. A. Lambert, Subnormality and weighted shifts, J. London Math. Soc., 14 (1976), 476-480.

12. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

13. J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1965), 709-718.

Received January 2, 1980.

UNIVERSITY OF ALABAMA UNIVERSITY, AL 35486

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024 HUGO ROSSI University of Utah Salt Lake City, UT 84112 C. C. MOORE and ANDREW OGG

University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90007 R. FINN and J. MILGRAM Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA	UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY	UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO	UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$102.00 a year (6 Vols., 12 issues). Special rate: \$51.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).

8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1981 by Pacific Jounal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics Vol. 93, No. 2 April, 1981

Ilya Eugene Blum and Srinivasa Swaminathan, Continuous selections and
I awrence James Brenton Differentiably k normal analytic spaces and
extensions of holomorphic differential forms 261
Jo-Ann Deborah Cohen . Topologies on the ring of integers of a global
field
Robert Jav Daverman. Detecting the disjoint disks property
Edmund H. Feller, Rings where the annihilators of α -critical modules are
prime ideals
Richard Elam Heisey and Henryk Torunczyk, On the topology of direct
limits of ANRs
Gerald William Johnson and David Lee Skoug, Notes on the Feynman
integral. I
Michael S. Keane and Stuart Jay Sidney, Distinguishing a plane curve
from other curves similar to it
Leonid A. Luxemburg, On compact metric spaces with noncoinciding
transfinite dimensions
Chun Ming Ma, A uniqueness theorem for Navier-Stokes equations
Donald J. Newman and Theodore Joseph Rivlin , A characterization of the
weights in a divided difference
Marc Aristide Rieffel, C*-algebras associated with irrational rotations 415
Kichi-Suke Saito, Invariant subspaces for finite maximal subdiagonal
algebras
* homomorphisms between C* algebras
-nonionorphisms between C -algebras
initial-boundary value problems for the Navier-Stokes system in
domains with noncompact boundaries 443
Tavan Thomas Trent, New conditions for subnormality 459
L. E. Ward, Extending Whitney maps 465
Leslie Wilson. Jets with regular zeros
Sergio Eduardo Zarantonello. The sheaf of H^p -functions in product
domains