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The purpose of this note is to prove the following theo-
rem.

THEOREM 1.1. Let (R, m) be a Noetherian local ring of
dimension d ^ 1 and depth d — 1. By i? denote the comple-
tion of R in the m-adic topology. Then the following are
equivalent:

(1) R is equidimensional and satisfies Serre's property

( 2 ) Hίr^R) has finite length
( 3 ) There exists an N > 0 such that if xlf , xd is a

sequence of elements R with htfe^ "m,Xij) = j for all j -
elements subsets of {1, --,n}, l^jtίn, and if wii^N,
l^i<^d, then xψi, , x™d is an unconditioned d-sequence.

Recall the local ring (S, N) is equidimensional if for every mini-
mal prime divisor p of zero, dim S/p = dim S.

Serre's property Sk is that

depth Rp ^ min [ht p, k]

for all primes p.
We will always denote the local cohomology functor by Hi(_)

([1]).
We recall the definition of a d-sequence due to this author [3].

DEFINITION 0.1. A system of elements xu ••-, xd in a commuta-
tive ring R is said to be a ^-sequence if

( 1 ) x t $ ( x u ••-, x i f •••, x d )

( 2) ((xlf , a?f): xi+1%) = (fe, , xt): xk) for fc ^ ί + 1 and i ^ 0.
A d-sequence is said to be unconditioned if any permutation of it
remains a d-sequence.

These have been studied extensively by this author and have
been useful to determine the "analytic" properties of ideals generated
by them. In [3] the following was skown:

PROPOSITION. Let (JS, m) be a local Noetherian ring. Then R is
Buchsbaum (see [10] for a definition and discussion) if and only if
every system of parameters forms a d-sequence.

Thus Theorem 1.1 may be seen as a related result, characterizing
rings in which "almost all" s.o.p.'s form a ^-sequence. Independent
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of this characterization of rings with "lots" of ^-sequences, Theorem
1.1 is the generalization of a result due to Steven Me Adam [7] which
in turn is related to a characterization of unmixed 2-dimensional local
rings proved by Ratliff [8].

Let (R, m) be a 2-dimensional local domain and let b, c be a
system of parameters. By S(b, c, n) denote the least k such that

(6-: ck) = (bn: ck+ι) .

Recall a local ring R is said to be unmixed if for each prime
divisor p of (0) in R, dim R/p = dim R.

Ratliff showed, [8],

PROPOSITION. The following are equivalent for a 2-dίmensional
local domain

(1) R is unmixed.
(2) S(δ, c, _) is bounded.
( 3 ) R{1) = Γϊ^tp^iRp is a finite R-module.

McAdam discussed this and obtained the following improvement:

PROPOSITION [5]. Let (R, m) be as above. Then the following
are equivalent:

(1) R is unmixed, i.e., for all prime divisors p of (0) in R,
dim R/p = dim R = 2.

( 2 ) R{1) is a finite R-module.
(3) There exists an N such that for every s.o.p. x, y

S(x, y,J)£N.

In particular, (3) is equivalent to saying for all n ^ N that
(xn: yn) = (xn: y2n) and this is equivalent (in this case) to saying xn, y%

form a eZ-sequence.
To see our statement (1) is equivalent to (1) of the above prop-

osition, note that if dim R = 2 and R is a domain, then to say R is
unmixed is precisely to say R satisfies Si and is equidimensional.

Finally, we will show that Ra)/R is isomorphic to Hi{R) in this
case, and show that Rw/R has finite length if and only if R{1) is a
finitely generated iZ-module. Hence our Theorem 1.1 is the exact
generalization of the above proposition of McAdam.

1* Proof of Theorem 1JL* For details on local cohomology we
refer the reader to [1]. We note the following facts.

(1) Since depth R = d - 1, HL{R) = 0 if i < d - 1.
(2) There is a canonical isomorphism, Hf\R) = Hl~\R).
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( 3 ) If S is a complete regular local ring mapping onto R (see
[6]) and M is the maximal ideal of S, then Ht\R) = Hfr\R) where
R is regarded as an S-module.

( 4 ) If S is chosen as in (3), e = dim S, and we let E = H^S/M) =
an injective hull of S/M, then

Horn, (Hi(R), E) = ExtΓ* (Λ, S)

and Jϊi(i?) = Hom s (ExtΓ'" CR, S), #)• This is local duality.
( 5 ) We may compute Hi~\R) as follows: let xlf —-,xd be an

s.o.p., and consider the complex,

θ Λx ί ί ,...)a. > Φ RXl,...,$.,...>x% > Rx .iX > 0

where the subscripts denote localization at the elements subscripted.
Then Hi"1{R) is isomorphic to the middle homology of this complex.
If we denote by syz (xlf , xd) the module defined by K/L where
K £ Rd is the module of syzygies of xlf ---,xd and L is the sub-
module of syzygies which come from the trivial ones given by the
Koszul relations, then

where if m* ^ nif the map

syz (a Γ1, , x2d) > syz (xf1, , xΊd)

is defined by mapping a syzygy (rl9 -—,rd) of (xt\ ---,Xdd) to the
syzygy (r^f2^2 α#d~*d, , r^Γ1"1*1 a;?^-1"^-1) of (a Γ1, , %7d).
We now turn to the proof of Theorem 1.1.

The fact (1) if and only if (2) holds is well-known but we give
the details here for completeness.

We first observe that H%r\R) has finite length if and only if
Hom5 (Ht\R), E) = ExtΓ ( d " υ (R, S) has finite length. (See [5].)

If p is a prime in S and R = S/I, then if p =£ /

(Extr ( d - 1 } (R, S))p = 0 .

Hence, ExtΓ ( d~1 ) (R, S) has finite length if and only if

(ExtΓ ( d-1 } (R, S))p = Exts; ι d-1 } «RP, Sp) = 0 for all P 2 / , pφM.

If i < d — 1, then since depth R — depth R = d — 1, we see

Hi(R) = HUR) = 0

and so

t r* (R, S) = 0
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or, otherwise put,

ExtS, {Rp, Sp) = 0

for all k ^ e - (d - 1) if and only if Ht\R) has finite length. (Note
for k > e, Ext | (M, S) = 0 for all M.)

Since Sp is regular,

Sup. {ExtSp (RP, Sp) Φ 0} + depth jg, = dim S9 . (See [9.])

From this we may conclude that Hi~\R) has finite length if and
only if depth (R)p > dimSp — (e — (d — 1)) i.e., if and only if

depth (R)p ^ dim Sp - dim S + dim R .

We claim that

dim Sp - dim S + dim R ^ dim (R)p

in any case. For since S is regular, dim S — dim Sp + dim S/p and
so the left side is just

—dim S/p + dim R .

Thus it is enough to show

dim R ^ dim S/p + dim (R)9

but this clearly always holds since p contains /.
Thus we have shown H£rι{R) has finite length if and only if

( * ) depth {R)p ^ dim Sp - dim S + dim R ^ dim (R)p .

We claim these last two inequalities occur if and only if R satis-
fies Stf_! and is equidimensional.

If (*) occurs then clearly (R)p must be Cohen-Macaulay for all
p Φ m, and since depth R = d — 1, this shows R satisfies Sd^. Since
we must have

dim (R)p = dim Sp - dim S + dim R

in this case, the work above shows that for all p 2 l ,

dim R = dim S/p + dim (R)p ,

and this shows R is equidimensional.
Conversely, since R is catenary, if R satisfies Srf_i and is equi-

dimensional then

( a ) depth (R)p = dim (R)p

for all primes p Φ m, and



A CHARACTERIZATION OF LOCALLY MACAULAY COMPLETIONS 135

(b) dim R = dim S/p + dim (R)p

for all primes p. Thus in this case (*) holds and so Hi~\R) has
finite length.

We now show (2) if and only if (3). Assume (2). Then there is
a N such that mNHt\R) = 0. It was shown in [2] that if R -» S
faithfully flat and xίf , xn e R then these elements form a d-sequence
in R if and only if they form a d-sequence in S. Thus we may work
in R and assume R is complete for the remainder of this implication.
By (1), R is locally Cohen-Macaulay on the punctured spectrum, i.e.,
R satisfies Serre's condition S ^ .

Now let xlf - , xd be in R such that ht (xh, , xh) — i for each
if 1 ^ i ^ d.

Then since J2 satisfies Sd_lf xh, , a?<d_1 form an jB-sequence for
any d — 1 of fe, , xd}. Hence to show (3) it is enough to show
for m ^ N that

Since we may rearrange the x, we may assume i = cί. Suppose
(rlf - , rd) is a syzygy of (xT\ , αϊ-Γ1, ^Γd). Since mNHt\R) = 0
we see that ;#?<* must kill the image of this syzygy in H£~\R).

By the construction (5) above we see this means that

xu , xd_x)
M)

becomes a trivial syzygy of

(x?^M, , xl*rι+M, xTd+M) .

In particular,

rdx7d(Xi9 -9 %d-i)M e (xΓ 1 +^, , α??

As xl9 •••, ̂ _! forms an i2-sequence, this shows (see [4]) that

which shows (3).
Now assume (3) and let us show (2). First, we show,

LEMMA 1.1. Let (R9 m) be a local Noetherian ring of dimension,
d. Suppose for every xlf , xdin m such that height (xl9 , xs) — j ,
there exist integers mί9 , md ^ 1 such that x?1, , x^ form a d-
sequence. Then Rp is Cohen-Macaulay for all p Φ m.

Proof. Let p be a minimal prime in R with Rp not Cohen-
Macaulay. If height p = n, choose alf , an in p such that height
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(au , ad — ί. Complete α lf , an to a system of parameters
alf , αΛ, αn + 1, , ad of i2 with ht (alf , α<) = i. Since p is the
minimal prime which is not Cohen-Macaulay, we may assume p is
associated to (alf , α*) with i <C n. Let m l7 -, md be chosen so
that αΓ1, •• ,α? ( l form a cZ-sequence. Then p is still associated to
αf1, -",aTκ By [3],

(αΓ1, , αΓO - ((αΓ1, , αΓ«): α^+ 1) Γ) (αf1, , a?*) .

Now since (aΓ1, , άdd) is primary to m, this decomposition shows
that p is associated to ((αΓ1, , a?*): α^+O However a^^ep and
α ^ 1 is not a zero divisor modulo ((αΓ1, , aTή: a^+ι). This contra-
diction proves the lemma.

Now assume (3). By Lemma 1.1 R satisfies Sd_χ. (Note we may
not assume R satisfies Sd^\)

Hence if xl9 , xd are chosen so that height (xh, , xdi) = i for
all 1 ^ i ^ d, to show H£~\R) = 0 it is enough to show in this case
that if such an xl9 , α?d are a d-sequence, then

syz (a?!, - ,xd) > syz (^, , xd_lf x\)

is onto. For if we can show this, then it is clear that the map

will be onto, where N is as in (3). This will show Hi~ι{R) is finitely
generated; as Hίr\R) satisfies the descending chain condition, this
will show (2).

So let (rlf , rd) be a syzygy of xlf , ^_!, »J. Then since

rd 6 ((xx, , xd^): x\) = ((a?lf , a?d_i): ajd)

we see

0 = rdxd + Σ siχi > a n ( i hence

(r, - βjX^Xx + + (rd_! - δ^^Jx^! = 0 .

Thus, (rx - 8xxd9 , rd_1 - sd_^d, 0) is a syzygy of (xl9 , ^ . i , £2

d).
Since a?lf •• ,5cί_1 will form an ϋJ-sequence, this syzygy of (xu •••,
^- i , «l) will be trivial. Hence the image of (slf , sd_lf rd) in
syz (a?i, , xd) will map onto (rx, , rd) e syz (xlt , ^2

d). This finishes
the proof of Theorem 1.1.

Finally, we wish to relate condition (2) of Theorem 1.1 to the
finiteness of Rw. To this end, let (12, m) be a 2-dimensional Noetherian
local domain and let S = 12(1) = Π R9 taken over all height one primes
p. If t is in S, then J = {r e R \ rt e R} is not contained in any height
one prime and is thus primary to m. Hence if x, y is an s.o.p.,
xΛeJfor some k. Then xkt = reR and so ί = r/xk. Thus J = (xk: r)
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is primary to m, and so ym e J for some J which shows r e (xk: ym)
for some m. Thus (see McAdam [7]), S = {r/xk\r e (xk: ym) some k, m).
(The converse is easy to see; i.e., such rjxk are indeed in Rp for all
height one primes p.)

Now H;n(R) in this case is the middle homology of

R >R,®Ry > Rxy > 0 .

That is, if

{(r/x\ s/ye)\r/xk - s/ye = 0} = AT

and M — {(r, r) | r e R] then

Hι

m{R) ~ N/M.

(Note rjxΛ + s/ye = 0 if and only if rye + sxk = 0 since R is a domain.)

We map S onto HiiR) as follows: if teS, let g(t) = (ί, ί) e JV/M.
The discussion above shows t £ Rx Γ\ Ry and so the map g{_) makes
sense. This map is clearly onto since

S — {r\xk\τ £ (xk: ym) for some k, m} .

The kernel is the set of t e S such that (t, t) e M; this is precisely if
teR.

We have therefore shown

HUR) = S/R .

Now if S is finitely generated over R, then HUJt) is also and
so it has finite length. Conversely, if Hl(R) = S/R has finite length,
then S is obviously a finite iϋ-module.
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