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It is known that every complex projective representation
of a finite group is realizable in a cyclotomic field Q(ξk).
This note is concerned with the problem of finding the
minimal k with this property and gives a partical answer
in this direction.

1* Let G be a finite group and let P: G -+ PGL(n, C) be a
complex projective representation of G. A representative of P is
a mapping T: G-*GL(n, C) such that for all xeG we have π(T(x))~
P(x) where π denotes the canonical homomorphism GL(n, C) —»
GL(n, C)/C* = PGL(n, C). P is called irreducible if in the vector
space V = C* there is no proper subspace W such that T(x) Wa W
for all xeG. P is called realizable in a subίield K of C if there is
a function α : ( ? - ^ C * and some matrix AeGL(n, C) such that the
coefficients of all the matrices a(x)AT(x)A~\ xeG, belong to K.
The representative T of P is said to be realizable in a subfield K
of C if for ]some matrix A e GL(n, C) the coefficients of all the
matrices AT(x)A~1

f xeG, belong to K. A subfield K of C is called
a (weak) projective splitting field for G if every (irreducible) pro-
jective representation of G is realizable in K. For any k e N denote
by ξk a primitive fcth root of unity in C. In [6] it is shown that
the cyclotomic field Q(ξk), k — \G\f is a projective splitting field for
G, and it was asked in the same paper (p. 191) whether \G\ could
be replaced by the exponent exp G of G. We shall point out an
example which gives a negative answer to this question, and then
we shall prove the following theorem.

THEOREM. The cyclotomic field Q(ζm), m = exp G' exp M(G), is
a weak projective splitting field for G.

Here G' denotes the commutator subgroup and M(G) the mul-
tiplicator of G. Note that expGexpM(G) divides \G\, comp. [1].

For basic concepts in the theory of projective representations
the reader may consult [3], V, § 23-25.

2* Let T:G—> GL(n, C) be a representative of the complex
projective representation P:G -> PGL(n9 C). Then for all x9yeG
we have T(x)T(y) = fix, y)T(xy) for some f(x,y)eC*, and the
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mapping / : G x G - > C * is a central factor system (2-cocycle). If
P is realizable in a subfield K of C we may choose T in such a way
that all values of / belong to K. Now let H\G, E*) be the second
cohomology group of the finite group G with respect to the multi-
plicative group E* of a field E, E* regarded as a trivial G-module.
(H\G, C*) = : M{G) is also called "multiplicator".) Any subfield
i? c C contains a primitive βth root of unity, e denoting the
exponent of the image of the canonical homomorphism H\G, E*) —>
H\G,C*) induced by the embedding E*<zC*, comp. [4], (2.1). If
K(zC is a (weak) projective splitting field for G, then, by the
above argument, the homomorphism H\G, K*) —> H2(G, C*) is surjec-
tive, hence K contains a primitive exp M(G)th root of unity.

In [2], p. 88, an example of a finite nilpotent group of exponent
4 with multiplicator of exponent 8 is given. Therefore Q(V—1) is
not a projective splitting field for this group. So the answer to
the above mentioned question of Reynolds is negative.

The following example (due to H. Pahlings) shows that in
general the cyclotomic field Q(ξk), k = eχτpM(G), is not a (weak)
projective splitting field for G. Let D — (a, b\a8 = a2 = 1, bab = a7)
be the dihedral group of order 16. It has an irreducible projective
representation P with representative T such that

ε — primitive root of unity of order 16. The factor system /, which
corresponds to T, has order 2. It is known that exp M(D) = 2,
comp. [3], V, (25.6). But there is no function a:D—>C* such that
det (α(α)Γ(α)) = a{af and trace (α(α)Γ(α)) - α(α)(2 + VY)m both
belong to Q.

3* Now we shall prove the theorem stated in § 1. A key role
is played by Clifford's theory for projective representations, comp.
[5], §2.

Let P be an irreducible complex projective representation of
the finite group G and let T be a representative of P such that the
values of the central factor system f:G x G—>C* which is deter-
mined by the relation T(x)T(y) — fix, y)T(xy), x,yeG, belong to
the group W of exp M(G)ΐh roots of unity in C. Let Z be the
character of T, i.e., X(x) = trace iTix)) for all xeG. The restriction
T\Gr decomposes as a direct sum of representatives of irreducible
projective representations of Gf. Let S be one of them and let φ
be its character. S is realizable in the cyclotomic field Q(£m), m =
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exp G'exp M(G). This is easily seen as follows. Consider the group
G\f): ={(α, h)\aeW, he (?'}, the multiplication rule given by
(alf h^)(a2y h2) = (a&fiK* h2), hjι2). Then lift S to a linear representa-
tion S of G'(f) by defining S((α, h))\ =aS(h). It is well known
(comp. e.g., [3], V, (19.11)) that S is realizable in the cyclotomic
field K=Q(ξk), A; = exp (?'(/)• Therefore this is also true for S.
But expG'(jf) divides exp G' exp M(G). Now let I be the inertia
group of φ, i.e.,

1 = {xeG\(f(x, h)f(xh, x^/fix, r 1 ) ) ^ - 1 ) - φ(h) for all heG'} .

By Clifford's theory there is a representative R of a protective
representation of I such that T is induced by R, and the restric-
tion RIG' decomposes as a direct sum of some copies of S. Further-
more, for every x e I there is an invertible matrix A\x) with coeffi-
cients in K such that A\x)S(h)A\x)~1 = S*(h) for all heG'. Schur's
lemma yields a central factor system t': I x I—> K* such that
A\x)A\y) = ί'(cc, y)A\xy) for all x, y e I. Choose a set {̂ } of right
coset representatives of G' in / and define

A(huδ): =f(h,uδ)-1S(h)A'(uδ), A(h): =S(h)

for all h e Gr. Then A is a representative of a protective representa-
tion of I which is realizable in K. Denote by t: I x / —> K* the
central factor system which belongs to A. The central factor system
ft'1:1 x I-> K* satisfies ft'^h^, h2x2) = ft~\xu x2) for all xl9 x2 e I,
hl9h2eG', comp. [6], §2. Hence it may be regarded as a factor
system of F: =I/G'.

There is a representative U of an irreducible complex projec-
tive representation of F such that R = A 0 inf£(Z7). Since F is
abelian there is a subgroup Fo ^ F such that U is induced by some
function X:F0->C* which satisfies X(a)X(b)=ft~\a, δ)λ(αδ). λ defines
an element λeHom (FQf C*/K*). We can find an element cce
Hom(G/G', C*/K*) such that a\F, = λ"1 and all values of the trivial
factor system da belong to K*. Define T': =α(g) Γ, /' : =fδa. By
Frobenius reciprocity (comp. [4], (1.12))Γ' is induced by A (x)
inf ( α | F ® ί7) and a\F® U is induced by a\Fϋ®X. All values of
α IFQ (x) λ belong to K. Hence a \ F (x) ?7 is realizable in K and then
also I " is realizable in K. This shows that P is realizable in K.
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