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Let X be a HCP" which admits a nontrivial smooth
S* action. Petrie defined and studied a set functions J,(m)
which are important in the study of local representations.
In this paper, we extended Petrie’s result to locally smooth
torus group actions on integral cohomology complex pro-
jective spaces.

Introduction. Let X be a closed smooth manifold homotopically
equivalent to CP™ which admits a nontrivial smooth S* action. An
interesting problem is to study the structure of the representations
of S' on the normal fibers to the various components of the fixed
point set. Let the fixed point set X*' consist of % connected com-
ponents X, i=1,2, ---, k. Let 7 be the equivariant Hopf bundle
[3]. Choose z,¢ X, and define k integers a, by %|,,(t) = t*. Then
Petrie [3] proved the following.

THEOREM 0.1. The k integers a, are distinct.

Suppose further that X, = x,, isolated points. Let TX|, (t) =
7, t"i. For each integer m and each ¢ =1, ---, k, set

n;(m) = number of j # 4 such that m divides a; — a; ;
d.(m) = number of j =1, --- % such that m divides «,; ,
0:(m) = ny(m) — d,(m) .

Then Petrie [3] proved the following.
THEOREM 0.2. 0,(m) = 0 and 6,p") =0 if » is a prime.

Although so far the actions are smooth, it is not difficult to see
that the numbers a, can be defined in the same way for an S* action
on an integral cohomology complex projective space and the numbers
x;; are defined if the action is locally smooth [1]. It turns out that
these results are also true for locally smooth S' actions on integral
cohomology complex projective spaces. The main purpose of this
paper is to extend these results to the category of locally smooth
torus actions on integral cohomology complex projective spaces such
that the fixed point sets do not necessarily consist of isolated points.
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Our approach is different from [3] and is more elementary in the
sense that we do not need equivariant K-theory and the Atiyah
Singer Index Theorem. This paper is organized as follows. In §1,
we study the torus actions on principal S'-bunles in a very general
setting and prove an extension of Theorem 0.1. In §2, we study the
upper bound of the dimensions of certain invariant subspace. §3,
we study the functions 6,(H) and prove an extension of Theorem 0.2.

1. Torus actions on principal S*' bundles. Let X be a para-
compact space which supports a left 7 action. Let 7: P— X be a
principal S* bundle. The following result is due to Stewart and Su
[3, p. 126].

THEOREM 1.1. If H'(X; Z) = 0, then a T* action on X lifts to
a T¢ action on P which commutes with the primcipal S' action on
P. If &t p)—t-p and (t, p) —>top denote two liftings of T° to P,
then there is a homomorphism 6: T° — S* such that

top =t-p-0(t) . ]

Let (&, p) >tp be a fixed lifting. We define an equivariant
complex line bundle » over X by letting E(7) = P X« C and {[p, z] =
[tp, z] where teT* z2eC, pe P. Suppose that the fixed point set X
is the disjoint union of k¥ + 1 components X, ¢=0,14, ---, k. For
each 4, choose x; € X; and define a character X, of T° by 7[.(t) =
X,(t). In this section we will study the general properties of these
characters under the assumption that the fixed point set of any T*
action on P is connected (including the empty set as usual).

LeMMA 1.2. For each ¢, there is a lifting of T° to P such that
the associated equivariant complex line bundle 7, satisfies
N:ile;(8) = X;XE)7 .
We will say that 7, is the normalization of 7 at x, and the

lifting is normalized at x,.

Proof. Define a new lifting (¢, p) —>fop by top = tpX,(t) and
let 7, be the associated equivariant complex line bundle. Let pe
7 X;) and te T zeC,

[p, 7:].,(0)2] = teolp, 2] = [top, 2] = [tpX,(t), 2] = t[pX.(?), 2]
— [pX8), L(8)2] = [p, XiOYL()2] -

Hence Uilzj(t) = X)) ]
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For the rest of this section, we will always assume that the
lifting is normalized at », and X (¢) = 1.

LEMMA 1.8. Let HC T*® be a subgroup. Then n'(X;)C P" ¢f
and only if X,(g) =1 for all ge H.

Proof. Suppose that X;(g) =1 for all ge H. Let pern'(X)).
lgp, 2] = glp, 2] = [p, X;(9)2] = [p, 2] .

Now it is clear that gp = p for all ge H and consequently, pc PZ.
Conversely, suppose that 7='(X;) c P”. Let pen(X)).

[py Z] = [gp; Z] = g[p! z] = [p, XJ(Q)Z] .
Hence %;(g) =1 for all ge H. ]

THEOREM 1.4. The k + 1 characters X, are distinct.

Proof. If the k + 1 characters are not distinct, we may assume
without loss of generality that X, = X,., By Lemma 1.3, we have
X, U X, cm(P%). Since we have assumed that P™ is connected,
7(PT") is a connected subset of X?°. It follows that X, and X, are
in the same component of X”°. This is a contradiction. Hence X, #
X; for i = . ]

CoroLLARY 1.5. #n'(X,) = P™. ]

PROPOSITION 1.6. Let HC T* be a subgroup. If X, and X, are
contained in the same component of X¥, then X,(g) = 1 for all g e H.
Conversely, 1if P7 is connected and X, (g) =1 for all g€ H, then X,
and X, are contained in the same component of X".

Proof. If X, and X, are contained in the same component of
X”, then, for ge H,

Xz(g) = 7”909(9) = 7}[%(9) =X(g) =1.

Conversely, if X,(g) = 1 for all g e H, then z*(X,U X,) C P" by
Lemma 1.3. Since by assumption, P#? is connected, X, and X, are
contained in the same component, namely w(P¥), of X*#. 1

2. The dimensions of invariant subspaces. For convenience,
let G = T*. Let E;— B; be the universal principal G-bundle. It is
well-known that H*(Bg, Q) = Q[t, - - -, t.] where degt, = 2. For the
sake of simplicity, we will write ¢ = (¢, ---, t,). For a graded
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H*(Bg, Q)-module M, we denote by M[t~'] for the localization of M
with respect to the multiplicative system generated by ¢. For a
G-space A, let A; = A X, E, which the associated bundle over B,
with fiber A. We will need the following result in [2].

PROPOSITION 2.1. Let A be a G-space. Then
(1) The tnclusion j: A — A induces an isomorphism

g% H*(Ag, Qt] — H*(AL, )t .

(ii) the top class in H*(A, Q) does not die in H*(Ag Q'] of
A s orientable and A + @.

Let X be a closed topological manifold of dimension 2» which
is also a rational cohomology complex projective space and which
admits a G action. Write the fixed point set X¢ = X, U --- U X, as
a disjoint union of its components. By a theorem of Bredon [1, p.
378], each X; is a rational cohomology complex projective space and
the inclusion X; — X induces isomorphisms j*: H(X, @) — H'(X;, @)
for ¢ £ dim X,;. Let Y X be an oriented invariant submanifold and
let C={i|X;CY}. In this section, we will study the dimension of
Y under the assumption that Y¢ = |J,., X, where C= . We would
like to point out that the most interesting case is that Y is a
component of the fixed point set of a subgroup of G.

THEOREM 2.2. With the above assumptions.

dimY < 2<§gidim X, + 1) .

ieC

Proof. By Proposition 2.1, H*(Y,, Q)¢ J{(H*(Xs @)[t™'], respec-
tively) is isomorphic to H*(Y{, @)U WH*(XE, Q)t™], respectively).
Since Y§ =Y% X B; and X§ = X% X B,.

H*(XY, QIt™] = @ H*(X) ® H* (Bt
and

H*(Yé, QIt™'] = @ H*(X) @ H*(By)lt™] -

This implies the rank of H*(Y, G)lt'] over Q[t, t7'] is equal to
Siiec 1/2dim X, + 1). Let ae€ H*H,, Q) represent the generator of
H*X, @) and let a; be its image in H*Y, Q). Since H*(X; Q)[t7']
is a free algebra over Q[¢, ¢~'] with basis 1, a, ---, a®, H*(Y,, Q)[t™']
is also a free algebra over Q[¢, '] with basis 1, «,, - -+, af where &
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is easily seen to be .0 (1/2dim X, + 1). Since the top classes in
H*(Y, Q) does not die in H*(Y, @Q){t'], we have

dim Y = Z(Z—l—dimXﬂ—l). ]

ieC

COROLLARY 2.8. With the above assumptions,
dimY < 2(vkH*(Y, @) — 1)

and the equality holds if and only if Y is a rational cohomology
complex projective space.

Proof. Since rkH*(Y? Q) < rkH*(Y, Q) [see [1, p. 163]), and
rEH*(Y°, @)=1/23,.c(dim X,;+1), the inequality follows immediately.
If the equality holds then »kH*(Y, @) =rkH*(Y?%, @) and H**(Y, @)=0.
This implies that Y is totally nonhomologous to zero in Y,. Let
a = j*a, where j: Y —Y, is the inclusion. It follows that H*(Y, @)
is generated by a. This implies that Y is a rational cohomology
complex projective space. The converse is obvious. ]

REMRAK. Petrie’s examples in [4] provide exotic S* actions on
CP" such that the fixed point set component Y of Z,, < S* has pro-
perty that dimY < 20EH*(Y, Q) — 1).

3. The functions 6,(H). Let G be a compact Lie Groups and
let V be a enclidian space on which H operates orthogenally. We
say that a G action on a paracompact space X is locally smooth if
for each orbit Y of type G/H there is a linear tube

PG Xy V— X

about Y in X, i.e., @ is an equivariant embedding onto an open neigh-
borhood of Y in X. Note that X must be a topological manifold
and the components of the fixed point set are topological submanifolds.
If v is a fixed point, then the action in a neighborhcod of z is
equivalent to an orthogonal action. See [1] for details.

Let X be a closed integral cohomology complex projective space
of dimension 2% — 2 and let X admit a locally smooth 7T° action.
Then X is the orbit space of a free S' action on a closed integral
cohomology sphere 3, and the 7* action on X lifts to a T* action on
> which commutes with the free S* action. Let 7 be the equivariant
complex line bundle over X associated to a fixed lifting. Then 7 is
the equivariant Hopf bundle defined in [4]. Let the fixed point set

X”"=XUX,U---UX,
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be the disjoint union its components X,. Each X, is a closed integral
cohomology complex projective space of dimension 2%, — 2 and
tom; = n. Choose x,€X,. Define k¥ + 1 characters X, as in §1.
Since 3 is an integral cohomology sphere, >7° is connected. By
Theorem 1.4, the & + 1 characters X, are distinct. For each 4, let
0:() = 32727 \5(t) be the representation in the normal fiber at x, to X,.
The following definition is essentially due to Petrie [3].

DEFINITION 3.1. For each subgroup HC T and each ©=0,1,
ok, set o (H) = Xc4,n; where A, = {j # i|X(g) = X(9) for all
g € H}, B,(H) = card B, where B, = {j|\n;(g) =1 for all ge H}. Let
0(H) = a(H) — B.H). O

It is easy to see that the function 6,(H) are independent of the
choice of the lifting. In this section, we will study the properties of
6,(H).

LeMMA 3.2. Let p be a prime and let HC T° be a subgroup of
order p*. Then X7 has no p-torsions.

Proof. Choose a prime ¢q == p such that X’ has no g¢-torsions.
Let K T® be a cyclic subgroup of order ¢® where b is so large
that X% = X™. It follows from the results of [1],

vkH*(X; Z) = vk, H¥X; Z,) = rk,H*(X"; Z,) = rkH*(X"; Z)
» 4 »
=l H*(X"; Z,) = v H*(X"YS Z)) = vl H*(X"; Z,)
= rkH*(X"™; Z) = vkH*(X; Z) .

It follows that »k H*(X"; Z,) = vkH*(X"; Z) and X* has no p-
torsions. ]

PrROPOSITION 3.3. Let HC T° be a subgroup. Then X* is orien-
table.

Proof. Let KC H be a subgroup of order 2° such that H/K
has no element of even order. By Lemma 3.2, X* has no 2-torsions.
Hence X* is orientable. It has been shown in [1] that the fixed
point set of a locally smooth action of a finite group of odd order
or a torus group on an orientable manifold is always orientable. It
follows that X* is orientable. O

THEOREM 3.4. 6,(H) = 0 for any subgroup HC T and 6,(H) =
0 +f H is a toral subgroup or a subgroup of order p* where p is a
prime.
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Proof. We may assume without loss of generality that ¢ = 0.
Let Y be a component of X* which contains X,. Let C = {j|X,;C Y}.
It is obvious that Y™ = U,.. X;. By Proposition 1.6, C & A, U {0}.

It is clear that

%dimY = (n, — 1) + BH) .
By Theorem 2.2, we have

L dimy < Sn, — 1= Sm o — 1= a(H) +ny — 1.
2 jec ie4g
Hence 6,(H) = ay(H) — B(H) = a(H) + n, — 1 — 1/2dimY = 0.

If H is a subgroup of order p-°, it follows from P. A. Smith
Theorem that >,” is connected. Hence C = A, U {0} by Proposition
1.6. By Lemma 3.2, Y is a mod p cohomology complex projective
space without p-torsions. Hence Y is a rational cohomology complex
projective spaces. It follows easily from Corollary 2.3 6,(H) = 0.
Similarly, we can prove the case that H is a toral subgroup. []

COROLLARY 3.5. Ifd6,(H)=0 for :=0, ---, k, then X" 1s a disjoint
union of rational cohomology complexr projective svaces for any sub-
group HC T and > is connected for any mormalized lifting.

We also include the following properties for future application.

PROPOSITION 3. Let HC T° be a subgroup. If X, and X; are
contained in the same component of X", then d,(H) = ¢,(H).

Proof. Let Y be the component of X“ which contains X, and
X,. It is clear that a(H) + n, = a;(H) + n; and 1/2dim Y = 5,(H) +
n, — 1= B;(H) + n; — 1. It follows that 6,(H) = d,(H). O

PROPOSITION 3. Let HC T° be a subgroup. If X (H) =X, (H)=1
and 6;(H) = 0, then 6,(H) = 0.

Proof. It is clear from the proof of Theorem 3.4 that 6,(H)=0
implies 3,7 is connected where lifting is normalized at z;. By Pro-
position 1.6, X, and X; are contained in the same component of X*.
1t follows from Proposition 3.5 that ¢(H) = ;(H) = 0. []
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