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AN ABSTRACT DISINTEGRATION THEOREM

BENNO FUCHSSTEINER

A Strassen-type disintegration theorem for convex cones
with localized order structure is proved. As an example a
flow theorem for infinite networks is given.

Introduction. It has been observed by several authors (e.g.,
191, 1101, |13] and |14]|) that the essential part of the celebrated
Strassen disintegration theorem (|12]| or |7]) consists of a rather
sophisticated Hahn-Banach argument combined with a measure
theoretic argument like the Radon Nikodym theorem. For this we
refer especially to a theorem given by M. Valadier [13| and also
by M. Neumann |10]|. We first extend this result (in the formulation
of |10|) to convex cones. This extension is nontrivial because in
the situation of convex cones one looses in general the required
measure theoretic convergence properties if a linear functional is
decomposed with respect to an integral over sublinear functionals.
For avoiding these difficulties we have to combine a maximality-
argument with, what we call, a localized order structure. On the
first view this order structure looks somewhat artificial, but it
certainly has some interest in its own since it turns out that the
disintegration is compatible with this order structure. The use-
fulness of these order theoretic arguments is illustrated by giving
as an example a generalization of Gale’s [4] celebrated theorem on
flows in networks (see also Ryser [11]).

1. A Disintegration theorem. Let (2, Y, m) be a measure
space with g-algebra ¥ and positive o-finite measure m. By Li(m)
we denote the convex cone of R.-valued (R,=R U {— }) measurable
functions on 2 such that their positive part (but not necessarily
the negative part) is integrable with respeet to m. Of course, two
elements of Li(m) are considered to be equal if they coincide almost

everywhere. Note, that for every fe Li(m) the integral S fdm exists
2

in R,, and that the function —co is an element of Li(m).
Throughout the paper we assume 0-(—c)=0. We are interested
in operators p: F'— L' (m), where F' is some convex cone. As usual,
such an operator is said to be sublinear if it is positively homo-
geneous (i.e., POux) = MP(@)Vx € F, YA = 0) and subadditive. If it is
superadditive instead of subadditive then it is called superlinear.
A linear operator is one which is both sublinear and superlinear.
For the study of operators F — L% we introduce in F an order
structure <, ,., which is localized on 2. This means that for every
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e 2 we have given an preorder <, on F' (a reflexive and transitive
relation on F') which is compatible with the cone structure of F
(see [2] or [3]).

An operator p: F — Li(m) is said to be monotone with respect
to this localized order structure (2-monotone for short) if for x, y e
F we always have:

P(x) < P(y) m-almost everywhere on {we 2|z < .y} .

DISINTEGRATION THEOREM 1. Let p: F— R, be linear and let
P: F— L (m) be an 2-monotone sublinear operator with

(1) plx) < SQP(x) dm for all xc F .

Then there is an Q-monotone limear operator T:F — Li(m) with
T <P (ie., T(x) < Plx)Vxec F) such that

(2) 2@) < SQT(x)dm for all e F .

Proof. Let @ Dbe the convex cone consisting of all simple
Y-measurable functions ¢: 2 — F. Here, a function ¢ is called
simple if ¢(2) is a finite set and if, for every xcF, the set
{we 2|4s(w) = x} belongs to Y. In @ we consider the preorder given
by:

6, £ 6y, = 6,(®) £ ,p,(®) for m-almost all we 2.

Then

p@) = | PG(@)(@)3dm()

defines a monotone sublinear functional on @. And

u(x) if ¢ is constant (with value x) on 2

o9) = {~ o otherwise

gives us a superlinear funectional on @, with 6 < p. According to
the sandwich theorem ([2] or [3]) there is a monotone linear v with
0=<yv=9p. And by using Zorn’s lemma we can further assume
that v is maximal among the linear functionals <p. Now, for
AecX and x e F, we define

(3) d(4, ) = v(1,x) ,

where 1, is the characteristic function of A4, ie., 1,(w)={1if we
A, 0 otherwise}. We claim that for z, y € F' and 4 €2 the following
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are true:

(4) d(4, -) is linear on F'

(5) d(-, x) is an additive set function on ¥
(6) L) = d(2, »)

(7) d(A, ¥) < SAP(x)dm

(8) when 2 <,y for m-almost all w e A then d(4, x) < d(4, %)

(9) if A4, is a sequence of pairwise disjoint sets in 3 then
d(U 4,, 2) = lim Inf 3’ d(4,, 2) .

The assertions (4)-(9) prove the theorem in the following way:

(5) and (9) show clearly that d(-, ) is a signed measure on 2.
Assertion (8) implies that this measure is absolutely continuous
with respect to m. This is so, because from m(A4) = 0 we obviously
get 2,0 and 0=, for almost all we A, and hence d(4, x) =
d(4, 0) = 0.

Now, we apply the Radon-Nikodym theorem to find a measur-
able function T(x) such that

(10) d(A, z) = SA T(a)dm .

Then, because of (7), the positive part of T(x) is absolutely integr-
able with respect to m, so T(x) must belong to Li(m). Assertion
(4) gives that « — T(x) is linear, and from (6) and (7) we obtain
(2) and T(x) < P(x). Finally, we show that z — T(x) is in fact 2-
monotone. Consider x, y€F, put B= {wel|x =£,y} and assume
T(x)Yw) > T(y)w) for we AC B with m(A4) > 0. Then, without loss

of generality, we may further assume that \ T(x)dm>— o (other-

wise we replace A by a suitable subset). AndA we have in contradic-
tion to (8)

d(A, ©) = SAT(x)dm > SAT(y)dm —dA,y) .
So we are left with:
Proof of (4)-(9): (4) and (5) are easy consequences of the
linearity of v, and (6) and (7) follow immediately from 6 < v < ».

Let <,y for m-almost all we A. Then 1,-2<1,-y and by monotony
of v we get:
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d(4, x) = v(1,-a) = v(1,-y) = d(4, y) .

So we have also proved (8).

The proof of (9) is a little bit more complicated and depends
essentially on the maximality of v. So, let the A, be as in (9) and
define for arbitary ¢ ¢ @:

(1) P($) = ¥(Ly-9) + lim inf 3 u(L,,-9) ,

where v = 2\U,.v 4,. Then p is superlinear (because of the inf in
the lim inf). From v < p we get

0@ =Ly + 3| Pe@)@im(@) = | Pe@)@dm = p().

Hence o < p. The c-additivity of m implies p =v: To see this
we use the following obvious inequality:

(12) 0(g) + lin}n sup v(1, -¢) = v(g),

where Z, = QA\(Y U Ur, 4,). Since the Z, are decreasing to ¢ we
get:
limsup v(1,, -¢) < lim sup p(1;, - ¢)

m—co

<limsup | P@)@dm@) =0.

This inserted in (12) leads in fact to o =v. Now, we apply the
sandwich theorem to obtain a monotone linear v with p =V = x.
Then, because of p = v and the fact that v was already maximal,
this yields y = V. Hence p = v. Inserting this in (11) and putting
¢ =1, .54, ® We get the desired result. Ol

REMARK 2. Without loss of generality one can assume the g
in Theorem 1 to be superlinear instead of linear, since the sandwich

theorem applied to ¢ < SQP(-)dm yields a linear z fulfilling the same

inequality as p¢. Then application of Theorem 1 to 2 gives the
desired result.

REMARK 3. A similar disintegration result ean be obtained for
linear functionals attaining values in a Dedekind complete Riesz
space. This can be done by replacing the use of the sandwich
theorem by the vector valued sandwich theorem of [3]. Of course,
in this case the arguments depending on the Radon-Nikodym theorem
do not work, and therefore the disintegration theorem for this
situation has to be stated in a less elegant form.
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2. An Example. We consider a signed measure # on some
measurable space (2, 3) and a positive finite measure = on 2 = 2 x
Q. We recall that a bimeasure (see |6] or |8]) on 2 is a function
y: 3 X ¥ — R being separately in each variable a signed measure.
By F we denote the convex cone of positive simple measurable
functions on @, i.e., functions of the form z = 3¥, a,l, , where
a,=0, A,e2. To every xc F we assign a function %: 2 — R by

i(w,, ®,) = max (x(w,) — z(®,), 0), ®, v, .
The map « — % is sublinear and a simple calculation shows that
(%) H(A) = 7(A X [A) for all AeX
is equivalent to

(x5 [ #a7 =< | ads for al aeF.
Q2 2
Using this and the disintegration theorem we get

FrLow THEOREM. The following are equivalent:

(i) f(A) = 7(A X (A) for all AcX

(ii) There is a bimeasure v on 2 = @ x @ having the follow-
ing properties:

(a) [i(A) £ v(A, Q) for all AcX,

(b) v(4, B) = t(A X BN(A) for all A, Be X,

(e) v(4, B) = 0 whenever A, BeY are disjoint.

Proof. (ii) = (i) is quite trivial.
(i) = (ii): We introduce in F an order structure localized on 2
by defining for w = (w,, ®w,)e 2 X 2

=,y — 2(w,) = y(®,) and 2(®,) = y(®,) .

Then the map x — P(x) = Z is £2-monotone. Now, consider the linear
function y: FF— R given by

() = Saxdﬁ.
According to (x) = (xx) the inequality (i) is equivalent to:

fe) = SQP(x)dr for all e F .

From our disintegration theorem we then obtain a 2-monotone
linear map T: F' — Li(z) such that

(13) Sﬁxdﬂ < SQT(x)dz'
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(14) Tax) ==
for all xc¢ F. We define

¥(A, B) = SEXBT(lA)df for A, BeX,

then v has the required properties. The assertion (a) is a con-
sequence of (18) and (b) comes directly out of (14). The £2-mono-
tony implies (¢). All what remains to prove is the o-additivity of
y in the first variable. Take an arbitrary sequence A4, | @, A,¢c 2.
Then (b) and the positivity of = give v(4,, 2) < 7(A4, x 2). Hence

(15) limv(4,, 2) =0.
If B, is such that B, ﬂ~An = @ then we get from (c) and (b) that
0 < v(4,, B, £7(4, X 2). Hence

(16) limy(4,, B,) = 0.

Now, using the additivity of v in both variables one can express
the sequence v(4,, B) (4, @, A., BeX) in terms of sequences like
(15) and (16). This gives the og-additivity in the first variable. [

Specializing the Flow Theorem to the case of finite diserete sets
? one immediately obtains Gale’s theorem (|4], [|11] or |1, page
38]). It is well known that this theorem is closely related to the
Ford-Fulkerson theorem. But whereas the Ford-Fulkerson theorem
for infinite networks can be obtained from the finite case via
Tychonoff’s theorem (see [5|) the situation is slightly more compli-
cated in case of Gale’s theorem (although not too different in
principle).
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