Pacific Journal of Mathematics

CARTAN SUBALGEBRAS OF A LIE ALGEBRA AND ITS IDEALS. II

DAVID J. WINTER

Vol. 94, No. 2

June 1981

CARTAN SUBALGEBRAS OF A LIE ALGEBRA AND ITS IDEALS II

DAVID J. WINTER

Cartan subalgebras H of a Lie algebra L and Cartan subalgebras \hat{H} of its *p*-closure \tilde{L} are related. This is used to prove that $I_0(\operatorname{ad} H \cup I)$ is a Cartan subalgebra of I if p=0 or $(\operatorname{ad}_I I)^p \subset \operatorname{ad}_I I$, by reduction to the known case $(\operatorname{ad} L)^p \subset \operatorname{ad} L$.

In Winter [3], the following theorem is proved about a Lie algebra L with Cartan subalgebra H over a field of characteristic $p \ge 0$.

THEOREM 1. Let I be an ideal of L. Then $I_0(\operatorname{ad}(H \cap I))$ is a Cartan subalgebra of I if either p = 0 or $(\operatorname{ad} L)^p \subset \operatorname{ad} L$ and $(\operatorname{ad}_I I)^p \subset \operatorname{ad}_I I$.

The purpose of this note is to relate Cartan subalgebras of Land those of the *p*-closure \overline{L} of L, in Theorem 2 below, and use this to show in Theorem 3 that the hypothesis $(\operatorname{ad} L)^p \subset \operatorname{ad} L$ in Theorem 1 can be dropped. This result is used in Winter [5].

We refer the reader to Jacobson [1] for preliminaries on Lie p-algebras (restricted Lie algebras) for p > 0.

THEOREM 2. Let L be a subalgebra of a Lie p-algebra M and let H be a Cartan subalgebra of L. Let \overline{L} be the p-closure $\overline{L} = \sum_{p=0}^{\infty} L^{p^e}$ of L in M where L^{p^e} is the span of $\{x^{p^e} | x \in L\}$. Then

(1) every ideal I of L is an ideal of \overline{L} and $[\overline{L}, \overline{I}] \subset I$;

(2) $\bar{L} = \hat{H} + L$ for any Cartan subalgebra \hat{H} of \bar{L} ;

(3) for any Cartan subalgebra H of L, \overline{L} has a Cartan subalgebra \hat{H} such that $[\hat{H}, H] \subset H$ and $\hat{H} \cap L \subset H$.

Proof. Statements (1) and (2) are proved in Winter [2], §7.1. For (3), note that $T = \overline{H}^{p^{\infty}} = \bigcap_{e=0}^{\infty} \overline{H}^{p^e}$ is a torus and $L_0(\operatorname{ad} T) = H$, as proved in Winter [4]. Letting \widehat{T} be a maximal torus of \overline{L} containing T, and letting $\widehat{H} = \overline{L}_0(\operatorname{ad} \widehat{T})$, \widehat{H} is a Cartan subalgebra of \overline{L} , by Winter [4]. Since $T \subset \widehat{T}$, we have $\widehat{H} = \overline{L}_0(\operatorname{ad} \widehat{T}) \subset \overline{L}_0(\operatorname{ad} T)$. Thus, \widehat{H} normalizes $\overline{L}_0(\operatorname{ad} T) \cap L = H$ in the sense that $[\widehat{H}, H] \subset H$; and $\widehat{H} \cap L \subset \overline{L}_0(\operatorname{ad} T) \cap L = H$.

THEOREM 3. Let I be an ideal of L and suppose that either p=0or $(ad_I I)^p \subset ad_I I$. Then $H_I = I_0(ad(H \cap I))$ is a Cartan subalgebra of I. Proof. If, furthermore, $(\operatorname{ad} L)^p \subset \operatorname{ad} L$, this is Theorem 1. In order to bypass this additional assumption, let M be a Lie p-algebra containing L as subalgebra. Then, by Theorem 2, there is a Cartan subalgebra \hat{H} of \bar{L} such that $[\hat{H}, H] \subset H$ and $\hat{H} \cap L \subset H$, and $\bar{L} =$ $\hat{H} + L$. By the Theorem 1, $\hat{H}_I = I_0(\operatorname{ad}(\hat{H} \cap I))$ is a Cartan subalgebra of I. But $\hat{H}_I = I_0(\operatorname{ad}(\hat{H} \cap L \cap I)) \supset I_0(\operatorname{ad}(H \cap I)) = H_I$ since $\hat{H} \cap L \subset H$. Thus, $H_I \subset \hat{H}_I$ and H_I is nilpotent. Since $H_I =$ $I_0(\operatorname{ad}(H \cap I)), H_I$ is also selfnormalizing in I and is therefore a Cartan subalgebra of I; e.g., $x \in I$ and $[x, H_I] \subset H_I$ implies $x \in$ $I_0(\operatorname{ad}(H \cap I)) = H_I$.

Note that H_I in the above proof is also maximal nilpotent in I, so that $H_I = \hat{H}_I = I_0(\operatorname{ad}(\hat{H} \cap I)).$

We can now consolidate and supplement some of our conclusions as follows.

THEOREM 4. Let L be a subalgebra of a Lie p-algebra M, let H be a Cartan subalgebra of L and choose (using Theorem 2) a Cartan subalgebra \hat{H} of \bar{L} such that $[\hat{H}, H] \subset H$. Then

(1) $\overline{L} = \widehat{H} + L$ and $\widehat{H} \cap L \subset H$;

(2) if I is an ideal of L and p = 0 or $(\operatorname{ad}_{I} I)^{p} \subset \operatorname{ad}_{I} I$, then $I_{0}(\operatorname{ad} H \cap I), I_{0}(\operatorname{ad} \hat{H} \cap I)$ are equal and are Cartan subalgebras of I; (3) if p = 0 or $(\operatorname{ad}_{L} L)^{p} \subset \operatorname{ad}_{L} L$, then $H = L_{0}(\operatorname{ad} \hat{H} \cap L)$.

Proof. For (1), note that $\overline{L} = \hat{H} + L$ by Theorem 2 and $\hat{H} \subset \overline{L}_0(\operatorname{ad} H)$ since $[\hat{H}, H] \subset H$, so that $\hat{H} \cap L \subset \overline{L}_0(\operatorname{ad} H) \cap L = L_0(\operatorname{ad} H) = H$. And (2) follows from the observation following Theorem 3. Finally, (3) follows from (2), taking L = I.

References

1. Jacobson, Lie Algebras, Wiley-Interscience, New York, 1962.

 D. J. Winter, Cartan decompositions and Engle subalgebra triangulability, J. Algebra, 62 No. 2 (1980), 400-417

3. _____, Cartan subalgebras of a Lie algebra and its ideals, Pacific J. Math., **33**, No. 2, (1970), 537-541.

4. _____, On the toral structure of Lie p-algebras, Acta Math., 123 (1969), 70-81.

5. ____, Root locologies and idempotents of Lie and nonassociative algebras, Pacifio J. Math., (to appear).

Received March 25, 1980. This research was partially supported by the National Science Foundation.

UNIVERSITY OF MICHIGAN ANN ARBOR, MI 48109

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024

HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90007

R. FINN and J. MILGRAM Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA	UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY	UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO	UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$102.00 a year (6 Vols., 12 issues). Special rate: \$51.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.). 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

> Copyright © 1981 by Pacific Jounal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics

Vol. 94, No. 2 June, 198	Vol.
--------------------------	------

Thomas E. Armstrong and William David Sudderth, Nearly strategic	
measures	
John J. Buoni, Artatrana Dash and Bhushan L. Wadhwa, Joint Browder	
spectrum	
Jack Paul Diamond, Hypergeometric series with a <i>p</i> -adic variable	
Raymond Frank Dickman, Jack Ray Porter and Leonard Rubin,	
Completely regular absolutes and projective objects	
James Kenneth Finch, On the local spectrum and the adjoint	
Benno Fuchssteiner, An abstract disintegration theorem	
Leon Gerber, The volume cut off a simplex by a half-space	
Irving Leonard Glicksberg, An application of Wermer's subharmonicity	
theorem	
William Goldman, Two examples of affine manifolds	
Yukio Hirashita, On the Weierstrass points on open Riemann surfaces331	
Darrell Conley Kent, A note on regular Cauchy spaces	
Abel Klein and Lawrence J. Landau, Periodic Gaussian	
Osterwalder-Schrader positive processes and the two-sided Markov	
property on the circle	
Brenda MacGibbon, \mathcal{K} -Borelian embeddings and images of Hausdorff	
spaces	
John R. Myers, Homology 3-spheres which admit no PL involutions 379	
Boon-Hua Ong, Invariant subspace lattices for a class of operators	
Chull Park, Representations of Gaussian processes by Wiener processes 407	
Lesley Millman Sibner and Robert Jules Sibner, A sub-elliptic estimate	
for a class of invariantly defined elliptic systems 417	
Justin R. Smith, Complements of codimension-two submanifolds. III.	
Cobordism theory	
William Albert Roderick Weiss, Small Dowker spaces	
David J. Winter, Cartan subalgebras of a Lie algebra and its ideals. II 493	