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The main results of this paper characterize countably
additive, positive linear functional on the algebra of
bounded operators on a separable Hubert space, and show
how such f unctionals can be viewed as analogues of positive
measures of Bishop-Cheng type. The paper is written enti-
rely within the framework of constructive mathematics.

Since the first appearance of Bishop's book [1], constructive
techniques have been applied in several areas of analysis, algebra
and topology. In this paper, we turn our attention to positive linear
functionals on ^f(H), the algebra of bounded operators on a separ-
able Hubert space H.

One reason why a constructive study of these functionals may
be of interest is that they are of considerable importance in the
vast theory of C*-and TF*-algebras [6], a theory which, in its pre-
sent form, appears to be highly nonconstructive. Another, and
perhaps more important, reason lies in the role played by certain
of these functionals in the foundations of physics. Indeed, it is our
belief that the development of constructive mathematical founda-
tions for physics may illuminate some of the darker philosophical
recesses which present theories seem unable to explore with much
success.

Our discussion will rely on some preliminary material on oper-
ators of trace class. The constructive problems with this material,
which is described in § 1, usually arise from the nonconstructive
nature of the least upper bound principle. For example, the dis-
tance from a point of H to the range of an operator in JSf{H) may
not be computable; this means that the classical theory of polar de-
composition of an operator has to be modified to one of approximate
polar decomposition. Another place where our inability to use the
least upper bound principle causes trouble is the proof of complete-
ness of the set of trace class operators with respect to the trace
class norm.

In § 2, we give various characterizations of countable additivity
of a positive linear functional on the set Ssf(H) of bounded oper-
ators on H for which the adjoint is computable. In § 3, we discuss
two constructive expressions of the analogy between countably ad-
ditive, positive linear functionals on <S%f{H) and positive measures
on the set of continuous, real-valued functions of compact support
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12 DOUGLAS S. BRIDGES

on a locally compact metric space. The work of § 3 can be regard-
ed as a first step towards a constructive theory of noncommutative
integration [5].

We shall assume familiarity with those features which disting-
uish constructive mathematics from its classical (that is, traditional)
counterpart, and with the foundations of constructive analysis de-
scribed in [1], [2] and [3]. Throughout our paper, a result stated
without proof should be regarded as an invitation to a little extra
effort on the part of the reader.

1* Let H be a separable, complex Hubert space with scalar
product <,>, (αj^i an orthonormal basis of H, and Jtf(H) the linear
space of bounded operators on H. Define the strong operator norm
|| ||8 and the weak operator norm \\ \\w on Jίf(H) by setting

m,n=l
2 — |<rom,o.>|

l

for each T in Jzf(H). Strong operator norms defined in terms of
different orthonormal bases of H induce equivalent metrics on the
unit ball £fλ{H) = {Te^f(H): VxeH (\\Tx\\ ^ ||α>||)} of J^(i ϊ); the
same holds for weak operator norms. Note that Jί?x(H) is a closed,
totally bounded subset of Jϊf(H) in the metric induced by the weak
operator norm; but that the weak operator compactness of i^( i ϊ )
is an essentially nonconstructive proposition [4].

A constructive proof that every element of ^f(H) has an ad-
joint would comprise a finite routine which, applied to any bounded
operator T on H, constructs the adjoint of T. It seems unlikely
that such a routine will ever be produced. However, if j%f(H) de-
notes the set of all elements of ^f(H) for which the adjoint is
computable, an examination of the proof of the theorem in [4] shows
that .S&[(H) = jy(jH") Π-Ŝ CEΓ) is weak operator norm dense in Sfx(H).
Moreover, if H is finite dimensional, then Jϊf(H) = Sf{H).

An element A of J*f(H) is said to be positive if it is selfadjoint
and (Ax, x) ^ 0 for each x in H. If A, B are selfadjoint and A — B
is positive, we write A ;> B. If A e j&(H)f then A*A Ξ> 0; we write
|A| for the positive square root of A*A. The existence of |A| is a
consequence of the functional calculus for A*A [3, Ch. 6].

An element U of Jϊf(H) is said to be a partial isometry if
there exists a projection P, called the initial projection of U, such
that \\UPx\\ = ||Pa?|| and U(I - P)x = 0 for each x in H. (As usual,
I denotes the identity operator x -+ x on H.) An element U of

is a partial isometry if and only if ί7* Z7 is a projection; in
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which case £7*Ϊ7 is the initial projection of Z7, and U* is a partial
isometry with initial projection UU*.

Of considerable importance in classical operator theory is the
polar decomposition of an operator S: S= U\S\, with U a partial
isometry. Such a polar decomposition is not always possible in con-
structive mathematics, as we may be unable to construct the pro-
jection on the closure of the range of S [cf. 6, p. 15]. Fortunately,
we can get by with the following constructive substitute.

THEOREM 1.1. (Approximate Polar Decomposition). Let Ae
J^(H), and let ε > 0. Then there exists a partial isometry U such
that ε is a bound for both A — U\A\ and \A\ — U*A.

Proof. Without loss of generality, we assume that A e,
Let (μ, f-+f(A*A)) be the functional calculus for A*A [3, Ch. 6, § 6],
and compute a strictly decreasing sequence (an)n^ of positive num-
bers converging to 0 such that the complemented sets

S(n) = ({a? e X: pr̂ a?) ^ — a} , ( x e l : p r ^ ) > — α})

are all integrable [3, Ch. 5, 6.5]. (Here, pr2 is the mapping (a?Jn̂ i —>
«! on the compact product metric space X = Π?=i [ —1» 1] underlying
the integral μ.) Were μS(n) > 0, it would follow from the inequal-
ity (IprJ — prx — 2αJZS(W) ^ 0 and [3, Ch. 6, 6.3] that there exists
xeH with ||g|| = 1 and <(|A*A| - A*A)x, x) ^ 2an > 0. As this
contradicts the fact that |A*A| = A^Af we conclude that μS(n) = 0.
It follows that the complemented set (prx < 0), with characteristic
function sup^Z^), has measure zero. Thus, by [3, Ch. 5, 5.1],
F = {x e X: pr^x) :> 0} is a full set. As IprJ = prx throughout F,
we have

A"A = |A*A| = |pr1|(A*A) = pr^A^A) .

Now choose a in (0, ε) so that the complemented set

S = (prx ^ a) = ({x e X: prx(x) ^ α}, {x e X: pr^α) < α})

is integrable, and let X — Xs, φ = (prx V α)~1(pr1 V Q)mX and C7 =
Aφ(A*A). As the domain G of X is a full set and pr^2 = X = X2 on
G, we have

= A*Aψ(A*Af

= (pr^2)(A*A)

= Z(Λ A) ,
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and X(A*A) = X(A*A)2. (Note that A*A commutes with every oper-
ator f(A*A) defined by the functional calculus for A*A.) Hence
X(A*A) is a projection, and U is a partial isometry.

Throughout the full set FnG, we have Ipr^l - ^pr}/2)l ^ α and
pr}/20 = Z. Hence, by [3, Ch. 6, 6.1], a is a bound for A*A(I -
φ(A*A)\A\), and \A\φ(A*A) = Z(A*A). For each x e i ί with | | s | | ^
1, we therefore have

| | ( A -

= <(A* - |A| U*)(A - U\A\)x, x)

^ |<A*A(J- 0(A*A)|A|)α>, x>| + |<(|A\φ(A*A)A*A - tf*E7|A|2)s, a?>|

^ α + |<(| A|0(A*A) - X(A*A))A*Ax, a>|

< ε .

Thus ε is a bound for A — Z7| A|. Similar considerations, the details
of which we omit, enable us to show that ε is a bound for \A\ —
U*A. •

An element A of *Szf{H) is said to be a Hilhert-Schmidt operator
if Σ»=i II Aan ||2 converges; in which case the sum of this series is
independent of the orthonormal basis (αj, and we write ||A||2 for
(Σ»=i II Aan\\2)1/2. If A is a Hilbert-Schmidt operator, then so is A*;
if also B G .Sϊf(H) and β is a bound for 5, then AB and βA are
Hilbert-Schmidt operators, \\AB\\2 ̂  /3||A||2 and \\BA\\2 ̂  /5|| A||2.

An operator Ae *S$?(H) is said to be of trace class if || 4̂ ||i =
Σ =i <\A\an, an) converges. In that case, || A||x = Σ?=i III A|1/2αn||

2; so
that |A|1/2 is a Hilbert-Schmidt operator and || A Hi is independent of
the orthonormal basis (αj. Linear combinations of trace class
operators are also of trace class.

Before discussing trace class operators any further, it is con-
venient to state the following simple consequence of the Cauchy-
Schwarz inequalities in H and Cn.

LEMMA 1.2. Let A be a positive operator, R and S elements of

f and p, q positive integers with q > p. Then

V II Λ1/2J?π II2Y/2 /'v II Aι/2Rπ
P+l / \p+l

Let A be of trace class, let Bej^(H), and let β be a bound
for B. Given ε > 0, construct partial isometries U, V so that ε is
a bound for both \AB\ - U*AB and A - V\A\. For g > p, we
have
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±\((\AB\
P+l

- U*AB)an, an)\ ± \(U*(A - V\A\)Ban, o.) |
P+l

^ ε(l + β)(g - p)
P

^ e(l + /3)(? - p) + (

5Ξ β(l + β)(q - p)

Σ

Σ
+

( ± \\\ArV*Ua.\ή
\n=P+l /

As || |A|1 / 2F*ί7||2^l||Λ|1 / 2 | |2=||yl| |;/ 2, and as e>0 is arbitrary, it follows
that

(1.3) Σ <\AB\am αM> ^ \\A\\]n(± \\\ArBa%\\ψ
p+l \?>+l /

> p) .

As \A\mB is a Hilbert-Schmidt operator, we see that ΣΓ <|AB|αΛ, α%>
converges, and hence that AS is of trace class. Moreover, IIABII^
|| A||ϊ/2||| A|1 / 25||2 ^ ^ || A|| l e A similar argument using approximate
polar decompositions shows that

<\BA\an, an) £ β \\ A | | ί / 2(±(1.4)

Hence BA is of trace class, and
Taking B = I in (1.3), we obtain

>

(1.5) £± (\A\ an, an) £ \\ A \\r(± (\A\ an, a
+l \+1

(Q > P) •

It follows that ΣΓ (Aan, an} converges absolutely and that Σ?=i
\(Aan, an)\ ^ || AH,. Writing A = (|A| + A)/2 - (|A| - A)/2, a linear
combination of positive operators of trace class, we see that

Tr(A) = Σ <Aan, αn> ,

the trace of A, is independent of the orthonormal basis (αj. If A
is of trace class and Be.s^{H), then Tr(AB) = Tr(£A) [6, p. 37].

If A, B are operators of Hilbert-Schmidt type, then an argu-
ment using the approximate polar decompositions of AB and A
shows that

q / oo \ 1/2 / q

Σ <\AB\ an, an) ^ ( Σ II^XIlΊ (Σ
p+l \ 1 / \p+l

> P)
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whence AB is of trace class. Similarly, BA is of trace class. Writ-
ing Ban = ΣJEW (Ban, αΛ>αfc, we easily prove that Tr(AB) = Tr(BA).

If A is of trace class, then B —• Tr(A5) = Tr(lM) is a linear
mapping of J^( i ϊ ) into C. This mapping is uniformly continuous
on J^Cff) with respect to the weak operator norm, and so extends
to a linear functional φA on ^{H) that is weak operator uniformly
continuous on jg&H). As JZKH) is weak operator totally bounded,
φA is normable: that is, | | ^ | | = sup{|^(B)|: Bejg&H)} is computable.

For each B in

\φA{B)\ £ Σ l<ASα%, αn>| ^ \\AB\\, £ \\A\\, .
1

On the other hand, given ε in (0, 1), and computing in turn a posi-
tive integer v and a partial isometry U such that ΣΓ+i (\A\an, an} < ε2

and εv~ι is a bound for \A\ — U*A, we have (by (1.4))

\φA(U*)\ = {U*Aan, an)

- U*A)a,, an) I

{U*Aan,an)\

^ \\A\\, - ε - ε 2 -

It now follows that | | ^ | | = ||Al|le
The set of trace class operators on H, taken with the trace

class norm || 1̂ , is a normed linear space over C. We prove that
this space is || Hi-complete. Let CA^^i be a || Hi-Cauchy sequence
of trace class operators. As \\Aβ — Ak\\λ is a bound for Aά — Ak,
{Ak)k^x converges in bound (that is, uniformly on the unit ball of H)
to an element A of J*?(H); as ||A, — A^ is also a bound for
A* — At, (A*)kz! converges in bound to an element of J*f(H) which
is clearly the adjoint of A. Given ε > 0, compute k(e) so that
|| Aj — AfcHi ^ ε whenever j , k ^ fe(ε). If U is a partial isometry and
q > p, we have

Σ\<U*Akan, an)\ ^\\Ak- A ^ + Σ \<U*Akwan, an}\
+1p+1

for each k ^ 1, and therefore
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Σ | « | A | U * A ) , > | l i Σ
p + l fc-*oo p +
Σ |« |A| - U*A)aΛ, o.>| + l imΣ \<U*Akan> an)\

fc + l

^ Σ \<(\A\ - ϋ- A)α., αM>l + ε +
P+l P+l

^ Σ \<(\Λ\ - U*A)an, an}\ + ε + ± <\U*AkM\an> an)
P+l P+l

^ Σ \<(\A\ - U*A)aκ, an}\ + ε + \\Atw\\?(± HIA^J^α
P+l \P+1

the last step following from (1.4). In view of (1.1), we have

±(\A\ α., an) ̂  ε + ||Λ( ε ) | |ί
/ 2(Σ II IΛ(ε) \

manwψ (q > p) .
P+l \p+l /

It follows that A is of trace class. On the other hand, if v >̂ 1
and k ^ k(e), we have

Σ Ki/ ίAy - Λ)αw, an)\ ^ \\Aά - A^l, ̂  ε (j ^ k(e)) ,

and therefore

±(\A-Ak\anfan)
1

^ Σ K(\A - Ak\ - U*(A - A)K, α.>|
1

+ \im± \(U*(A}- Ak)an,any\

^ Σ \<(\A -Ak\- U*(A - Ak))an, an}\ + ε .
1

I t follows from (1.1) t h a t Σ ϊ (\A — -A* I α*> α ^ ) ^ ε whenever k ;>
and y ^ 1, and therefore t h a t lim^oo \\A — Aj,^ = 0.

2. Let ^ be a linear subset of £f(H), and φ a linear map-
ping of & into C. We say that φ is ultraweakly (resp. ultrastrong-
ly) continuous on ̂  if ^ is uniformly continuous on ̂ ?Π=S^(iϊ)
with respect to the weak (resp. strong) operator norm. If φ is
ultraweakly continuous and J ^ ( H ) c ^ ? , then φ extends to an ultra-
weakly continuous linear functional on £f(H), and this extended
functional is normable.

Classically, our condition of ultraweak continuity is equivalent
to the pointwise continuity of φ with respect to the weak operator
topology on ^ ? . As uniform, rather than pointwise, continuity
seems to be necessary for successful computation, and as there is
no known constructive proof of the Uniform Continuity Theorem,
we are obliged to build uniform continuity on & Π J*fi(H) into our
definition.
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We say that a linear mapping φ: & —• C is positive, and write
φ >̂ 0, if φ(A) ̂ > 0 for each positive A in &. We then have 0(A*) =
0(A)* for each A in & Π J&(H). If 0 is positive and A, j? belong
to ^fΊJ^Cff) , we have the following Cauchy-Schwarz inequality:
\φ{A*B)\2 ^ φ{A*A)φ{B*B). Moreover, if j ^ ( i J ) c ^ then 0 is also
bounded; in fact, it is normable, and \\φ\\ = φ(I).

If Ie&, and φ(I) = Σϊ=i0CPJ whenever ( P J Λ 2 Ϊ I is a sequence
of pairwise orthogonal projections in & whose sum in the strong
operator norm is /, then we say that φ is countably additive.

We now give constructive proofs of certain relations between
the various types of linear mapping defined above.

THEOREM 2.1. The following are equivalent conditions on a
positive linear functional φ on ,S^(H):

( i ) φ is countably additive.
(ii) φ is ultrastrongly continuous.
(iii) φ is ultraweakly continuous.
(iv) there exists a positive operator A of trace class such that

φ(S) = Ύτ(SA) for each S in ^f(H).
(v) there exists a sequence (aO«̂ i in H such that Σ?=ill^l|2

converges, and φ(S) = ΣϊU (Sxn, xn) for each S in

Proof. Although several parts of the following proof are based
on fairly well-known classical arguments, we shall give most of the
details of the proof, for the sake of completeness. For each n ^ 1,
let Pn be the projection of H on Can and let Qn = Σί=i P* Then
Qn is the projection of H on the span of {alf •••, α j . Define also
elements Sίtk of Jϊf(H) by setting Sj}kx = (x, a^)ak whenever x e H,
j ^ 1 and k ^ 1. Note that, if A e £?(H) and n ^ 1, then PnAPn =
(Aan, an)Pn and QnAQn =.Σ?fJfc=1<Aα

( i )=>(ii) Suppose that φ is countably additive. Define linear
mappings φn\.s/{H)-*C by setting φn(S) = Σί=i^(SP*) for each S
in ^f{H) and each w ^ 1. Given S in J^(H) and using the Cauchy-
Schwarz inequality for positive linear functionals, we have

φ(I)±\\Sak\
fc l
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It readily follows from this that φn is ultrastrongly continuous.
Moreover, for Sej&ϊ(H)

\Φ(S) - φn(S)\ =

k = l

As φ is countably additive, it follows that φn(S) converges to φ(S)
uniformly on J^(i7); whence φ is ultrastrongly continuous.

(ii)=>(iii) Suppose φ is ultrastrongly continuous. Let δ be a
modulus of continuity for φ on ( j ^ ( ί ί ) , || | | s), and let ε > 0. Com-
pute v ^ l s o that φ(I - Qu) ^ ε2/9(l + φ{I)) and Σ^v+i2" f c ^ <5(ε/3).
Given S in J#[(H), we have \\S(I - Qv)\\s ^ S(e/3), and therefore

α))l^ε/3. Also,

I φ((I - QJSQJI2 ^ 0(7 - QMQ>S*SQV)

^ Φ(i - QMI)

<ί ε2/9 ,

and so \φ((I — QU)SQJ)\ ^ ε/3. Finally, as all norms on the finite-
dimensional space ^f{QJJS)) are equivalent, there exists tc > 0 such
that, for all S in

α,, ak)\ £ κ\\S\\

Taken with the identity

Φ(S) - ^(QfcSQJ + ^(S(7 - QJ)

all this shows that \φ(S)\ ^ ε whenever S e J ^ ( J ϊ ) and | |S | | W ^ ic^
whence ^ is ultraweakly continuous.

(iii) => (iv) Suppose that ^ is ultraweakly continuous. For each
positive integer n, define A(n) = *Σιi,k=iΦ(Sktj)Sitk. Then A(n) is a
selfadjoint, positive operator of trace class. For each S in

), and so

\Φ(S) - φMn)(S)\ £ \Φ(S(I-Qn))\ + \φ((I- Qn)SQn)\ .

As || \\w ̂  || ||β, ^ is ultrastrongly continuous, and an argument used
above shows that \\φ — φΛln)\\ ->0 as n-^°°. As the linear func-
tional φ — φAlj) is ultraweakly continuous, it is normable. Moreover,
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^ WΦ-ΦAUM + \\Φ-ΦAM\\ ,

and so (A(fc))jb*i is a || I^-Cauchy sequence. Thus there exists a trace
class operator A such that limfc_oo \\A — A(fc)||i = 0. As || A — A(fc)||i
is a bound for A — A(k), {A{k))k^ converges to A in bound; so that
A is selfadjoint and positive. Finally, as

II0 — ΦA\\ ̂  IIΦ — ΦAUΆ + ||^-^(fc)l|

we have ||0 — φA\\ = 0, φ = φA9 and therefore φ(S) = Tr(SA) for each
S in

(iv)=>(v) Suppose that (iv) obtains, and let Se^f(H). Then
Am and SAm are Hilbert-Schmidt operators, and so AmSAm is of
trace class. Moreover,

φ(S) = Tr(SA1/2A1/2)

= Tr(A1/2SA1/2)

where xn = A1/2α% and ΣϊWΊI&iJI2 — Tr(A) converges.

(v) => ( i ) We omit the comparatively trivial details of this
part of the proof. •

COROLLARY 2.2. If φ is a countably additive, positive linear
functional on J*?(H)9 then φ is of the form S ^ Σ ϊ = i (Sxn, xn), where
each xn belongs to H and Σn=i ll^ll2 converges. •

In classical mathematics, the expression of a compact operator
A in diagonal form enables us to add the following to the list of
equivalent conditions in (2.2):

(vi) there exists an orthonormal basis (ej»^i of H, and a sequ-
ence (λjn^! of nonnegative numbers, such that φ(S) = Σ?=i^»<Sβn, en)
for each S in

It is easy to see that, if (iv) implies (vi), then the trace class oper-
ator A in (iv) can be expressed in diagonal form. The following
argument shows that, even in a two-dimensional Hubert space, this
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expression may not be possible by constructive means.

Let x and y be nonnegative numbers with xy = 0 and y < 1,

and let A be the operator on C2 with matrix Γ1 + x

 1 ^ Ί. Then

A is a positive, compact operator on the Hubert space C2. Suppose

that A can be expressed in diagonal form; so that there exist com-

plex numbers λ, u, v such that \u\2 + \v\2 Φ 0 and Γ1 \ x

 Λ

v Ί Γ ^ Ί =

λ v . Then (1 + x)u + yv — Xu9 yu + (1 + y)v = Xv, (1 + x)uv + yv2 =

λwy = ΐ/w2 + (1 + 2/)w, and so

(*) xuv + 7/v2 = 2/u2 + yuv .

Multiplying (*) through by x we obtain x2uv = 0. On the other hand,
multiplying (*) through by y, we obtain y\%2 + uv — v2) — 0. If
u Φ 0, then we have either v Φ 0, in which case x2 = 0 and so x — 0;
or |v| < I^|/2. In the latter case, we have

\u2 + uv — v2\

whence y2 = 0, and therefore y = 0. If v ^ 0, then, replacing 6̂ by
i; in this argument, we again find that either x = 0 or y = 0. It
follows from all this that if we have constructive means of expres-
sing any positive operator on the Hubert space C2 in diagonal form,
then we have a constructive proof of the essentially nonconstruc-
tive proposition

Vx ^ 0 Vy ^ 0 (xy = 0 ==> (a; = 0 or # = 0)) .

We conclude that a constructive proof that (iv) implies (vi) is un-
likely to materialize.

3* In classical mathematics, there is a well-known analogy be-
tween countably additive, positive linear functionals on J*f(H) and
positive integrals on C(X), where X is a locally compact metric
space. In this analogy, projections correspond to characteristic
functions of integrable sets, positive operators to nonnegative inte-
grable functions, and expressions of the form (Ax, x) to values of
integrable functions.

In the constructive integration theory of Bishop and Cheng ([2],
[4, Ch. 5]), countable additivity of an integral μ is replaced by the
stronger property:

(ΐ) If /o is an integrable function, and (/JΛ^i is a sequence of
nonnegative integrable functions such that Σ«=i £*(/«) is convergent
and less than μ(f0), then there exists x such that Σϊ=i/»W is con-
vergent and less than fo(x).
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It is very easy to obtain the corresponding property of countably
additive, positive linear functionals:

PROPOSITION 3.1. Let φ be a countably additive, positive linear
functional on Jίf(H), Ao an element of J?f(H), and (An)n^ a sequ-
ence of positive, self ad joint elements of J?f(H) such that Σ?=i Φ(An)
is convergent and less than φ(AQ). Then there exists a unit vector
x in H such that ΣϊU (Anχ, x) ^s convergent and less than (Aox, x).

Proof. By 2.2, φ is of the form S ^ Σ ? = i (Sxk9 xk), where each
xk belongs to H and Σ?U II χk II2 converges. Thus ΣϊU ΣΓ=i (A*χk, χk>
converges to Σ»=i0CA*) As each term (Anxk9 xk} is nonnegative for
n ^ 1, it follows that Σ?=i (A%xk9 xk) converges for each k, and that
Σ?=i Σϊ=i (Anxk9 xk) converges to Σ»=i0(-AJ Hence

OO OO OO

> o,

and so there exists k with ΣϊU <̂ 4-A, %> < (A^, »*) It only re-
mains to set x = ll^fcll"1^. Π

In the special case where each fn is the characteristic function
of an integrable set, the Bishop-Cheng property (f) of the integral μ
enables us to construct x such that fQ(x) = 1, and fn(x) — 0 for each
n ^ 1. Our proof of the analogue of this property for countably
additive, positive linear functionals requires the following lemma.

LEMMA 3.2. If Pl9 •••, Pn are pairwise commuting projections

on H, then I - Ut=i (I ~ P*) ̂  Σί=i *V

Proof. For n = 1 this is trivial. To complete an inductive
proof, we observe that if / — ΠϊU (I ~ Pk) ̂  Σ?=i Pk for some posi-
tive integer m, and if xeH, then

— Π (/ — Pk) i χj χ

k = l /

fc=l

_ Pkχ,χ) +

+1

Σ Π
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THEOREM 3.3. Let φ be a countably additive, positive linear
functional on Jί?(H) and (Pn)n^0 and sequence of pairwise commut-
ing projections on H such that Σ»=i Φ(P*) is convergent and less then
Φ(P0). Then there exists a unit vector x in H such that Pox = x,
and Pnx = 0 for each n ^ 1.

Proof. We first consider the special case where there exists ζ
in H such that φ(R) = (Rζ, ζ) for each R in £?(H). If m, n are
integers with m > n ̂  1, then

m \ / n \ 2

πα-p»)f- π(/-fψ
k=l / \Λ=1 /

ttd- pή(i- kfl+i(i-

( m

I-J1(I-F

ξ, ξΣ
k=n+l

Σ
k=n+l

the second last step following from 3.1. As Σ?= 1 (Pkξ, ξ) = ΣΛ
is convergent, we see that ((Πϊ=i (I — Pk))ζ)n^ι is a Cauchy sequence
in H; whence we can compute

V = (fίd- PS) ξ = lim (Π (I - P.))ξ •

For each n ^ 1, we clearly have PnPj] = P0PnV = 0. On the other
hand, writing

- mi-
we have

Π(

= IIΛf ll
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, f> - ( ( / - Π ( / - P

^ || Poξ || α(<P,f, f> - Σ <PA £>) by 3.2

Hence

<PoV, f> = <?, Pof> = lim ( ( Π (/
\ \ A 1

The Cauchy-Schwarz inequality now ensures that Pj] ^ 0. To com-
plete the proof of our special case of the theorem, it only remains
to take x = WPtflW^PoV-

To handle the general case, we first apply 2.2 to construct a
sequence (ffc)^i i n H such that X^=1 ||ffc||

2 is convergent and φ{R) =
Σ?=i Ĉ ffc, ί*> f o r e a c l 1 R i n £?(H). Let iίoo be the direct sum of a
sequence of copies of H, with the standard scalar product, and let
ξ = (ffc)fcέl. For each projection P on H and each x = (xk)k7ίl in iί*,,
define Px = (Pxk)k^ι Then P is a projection on Hoo and <Pf, f> =
Σ?=i < P ^ , f*> - <*(P). Thus

As (PJΛ£o is a sequence of pairwise commuting projections on ίίoo,
the first part of the proof shows that there exists x = (%k)k*i ίn -ffoo
such that Σ?=i ll̂ fcll2 = llxll2 — 1> Po ̂  = *> and P%x = (0) for each
n'Sil. With fc chosen so that \\xk\\ Φ 0, we complete the proof by
setting x = ll^fcll"1^. •

We end with the analogue of the fourth postulate for the Bishop-
Cheng integral [2, p. 2]. This leaves undiscussed only the third
postulate, whose analogue is the unnecessary restriction that | |0| |
be positive.

THEOREM 3.4. Let φ be a countably additive, positive linear
functional on J*f(H), and let A be a self ad joint operator on H.
Then lim^co ψ(AΛnΙ) = φ(A) and limn_oo^(|-4| Λ n~ιI) = 0. •

Here, A /\nl and J A \ A n~γI are to be interpreted by means of
the functional calculus for A. The proof of 3.7 is a fairly straight-
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forward application of that calculus, and is left to the reader.
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