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In this paper it is shown that the conical points of the
joint numerical range belong to the joint spectrum. More-
over, we discuss the bare points and extreme points of the
joint numerical ranges for the n-tuples of commuting normal
operators and Toeplitz operators.

Introduction. The notion of the joint numerical range was first
investigated by Halmos ([6], Prob. 166). Dash [4] tried to find how
much of the knowledge about the numerical range in the single
operator case carried over to the analogous situation in the case of
an n-tuple of operators. Our purpose is to discuss the same subject
as his. Dash [4] studied particularly about the convexity of the
numerical range known as the Toeplitz-Hausdorff theorem. Here we
shall, however, bring the boundary point of the numerical range
into focus. In the case of a single operator, many authors have
asserted the results referring to the relation between the numerical
range and spectrum. Concerning these, Dash [4], Juneja [8], Abramov
[1], Buoni and Wadhwa [3] have investigated the relation between
the joint spectrum and joint numerical range. Abramov (1] has
shown that the conical point of the closure of the joint numerical
range of A = (4, ---, A,) belongs to the joint approximate point
spectrum of A in the case of the family A consisting of self-adjoint
operators. In §1, our result shall be given more clearly than
Abramov’s one even to the family of arbitrary operators, by means
of Hildebrandt’s technique [7]. In §2, we shall introduce a class of
operator-families called joint normaloid. And, in §3, we shall discuss
the bare points and extreme points of joint numerical ranges for
the operator-families belonging to the joint normaloid.

Notation and definition. Throughout this paper, H will be a
complex Hilbert space with the scalar product (,) and the norm
Il-1l, and all operators on H will be assumed to be linear and bounded.
Let A= (A, ---,A,) be an n-tuple of operators on H. The joint
numerical range of A is the subset W(A) of the n-dimensional
unitary space C™ such that

W(A) = {(Aw, @), - -+, (A, ¥)): we H, |[2] =1} .

In the case of » = 1, it is the usual numerical range of an operator.
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We shall say that a point z = (2, ---, 2,) of C* is in the joint
approximate point spectrum o.(A) of A if there exists a sequence
{x,} of unit vectors in H such that

[z — A || — 0 — o), k=1,---,m.

A point 2= (2, ---, 2, Will be called a joint eigenvalue of A if
there exists a nonzero eigenveector x such that

Arx=zx, k=1,---,n.

And a point z = (z, -- -, 2,) will be said to be in the joint residual
spectrum o,(A) of A if there exists a nonzero vector x such that

Afxr=zx2, k=1,---,n,

where z, denotes the complex conjugate of z,. (Consult [5].)

Moreover, let A = (4,, ---, A,) be an n-tuple of mutually com-
muting operators. And let A" be the double commutant of A. Then
we shall say that a point z = (2, ---, 2,) of C" is in the joint spectrum
o(A) of A relative to A" if

kz;JlBk(Ak —z) =1,

for all B, B,, ---, B, in A”, where I denotes the identity operator.
(Consult [5].)

1. Conical points.

DEFINITION 1. Let a closed subset K of C* be called a closed

convex cone with vertex (0, ---, 0) whenever K satisfies the following
properties:

(1) K+ KcK,

(2) aKcCK forall a=0,

(3) Kn(—-K)={©,---,0)}.

If, for FcC" and z = (2, -+, 2,) € F, there exists a closed convex
cone K with vertex (0, ---,0) such that Fc K — 2, then we shall
call the point z a conical point of F.

THEOREM 1. Let A= (A, ---, A,) be an n-tuple of arbitrary
operators. If z=(z, -+, 2,) is a conical point of W(A) (throughout
we shall use the bar symbol for closure), them z belongs to the joint
approximate point spectrum o.(A) of A. If, moreover, z is in W(A),
then z is a joint eigenvalue of A.
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Proof. We may assume without loss of generality that the
conical point z of W(A) is (0, ---,0). Then we can choose n linearly
independent vectors a,, ---, @, in C* and » constants 6,, ---, 6, such
that 00, <m k=1, ---, » and

W) claa, + -+ +aa,:0=arga, <0, k=1, ---,n}.
Let a set {e, ---, e,} of vectors in C" be a basis in C* such that

the jth coordinate of e, is 0,;, k=1, ---, n, and e, = 7@, + -+ +
Yuklay & =1, -+, n. Putting

B, = vuA, + - +'7knAny k:]-, ce, M,
it follows that
(*) W(Bl, tt Yy Bn)c{(ﬁl, tt Bn):0§arg6k§0k’k=1’ ..',,n’} .

We shall apply Hildebrandt’s method [7, p. 232] to the argument
follows. Let %k be any fixed element in the index set {1, ---, n}.
We put here

€% = N, = My + vy,

where p,, v, are real numbers. Since we can, moreover, assume 6,
to be nonzero, v, is assumed to be nonzero. Therefore

() i= Lo — ).
Y

k

Furthermore, we decompose B, such that
B, =X, +1Y,,

where X,, Y, are self-adjoint. Substituting the formula (**) for 1,

B, = X, — %Yk + x,,(_jk_y,,) .

k

Here, we put

Tk:Xk_—;LLYk and Sk':lYk-
Then T, S, are self-adjoint and B, = T, + \.S,. Since (B, ) =
(Tye, ) + A(Six, ) for every unit vector x, T, and S, are positive
from (*).

Now, since z = (0, ---, 0) € W(A), (0, ---, 0) € W(B) and then there
exists a sequence {x;} of unit vectors such that (B, x;) — 0k = 1,
---,m, 71— ). And, since (T,x; x;) and (S,x; x;) also converge to
zero for every k, we have
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B, ——0(i— ), k=1 ---,m.

On the other hand, since the matrix M:

Tu * Vin
M=)
Vma * Yan
is regular,
rA, B,
s
A, B,
Hence we have A,x;, —0(t— ), k=1, ---, n. Thus we get the proof

of the first half of the theorem.

Next we assume that z = (0, ---, 0) € W(A). Then, there exists
a unit vector « such that (4,2, 2)=0,k=1, ---, n. So, if we take
x in place of the above sequence {x,}, the proof of the latter half
of the theorem follows in the same way as the first half.

2. Joint normaloid operator-families.

DEFINITION 2. For any m-tuple A = (4,, ---, A,) of operators,
the following nonnegative numbers:

Al = sup{(| Awz|® + --- + [[Au|)" [|z] =1},
w(A) = sup{(|(Ax, )" + -+ + [(A.z, ) 2| = 1},
r(A) = sup{(z,|* + -+ + |z, ])"zc0(A)},

r:(A) = sup{(|2, [ + -+ + [2.,[)"*: 2 € 0:(A)}

are called the joint operator morm, joint numerical radius, joint
spectral radius and joint approximate point spectral radius respec-
tively, of A.

DEFINITION 3. An n-tuple A = (4, ---, A,) of operators is said
to belong to the joint normaloid or to be joint normaloid if w(A) =
| Afl.

In order to show the following propositions we need the following
results shown by Dash [5].

First, suppose that A = (4,, ---, A,) is a commuting n-tuple of
normal operators. Then there exists a measure space (X; #) and a
set of bounded measurable functions ¢, ---, 4, in L=(X; #) such that
each A, is unitary equivalent to the multiplication by ¢, on L*(X; ),
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k=1, --,n. That is,
Af =¢.f forall felXX;p), k=1, ---,n.

And the joint spectrum of A is the joint essential range of ¢ =
(¢, **, ¢.), that is, the set of all the points z = (2, ---, 2,) in C”
such that for every ¢ >0

y({teX: kzi11|¢k(t> ol < s}) >0.

And the joint spectrum of A is equal to the joint approximate point
spectrum of A, i.e., 0(4) = g.(4).

Secondly, suppose that ¢ = (4, ---, 4,) is an m-tuple of bounded
measurable function on the unit circle and L, = (Ly, - -, Ls,) and
Ty = (Ty,, -+, Ts,) are the n-tuples of the Laurent operators on L?
and Toeplitz operators on H? respectively induced by ¢. That is,
for each k=1, ---, n

’

Ly f = ¢.f for all fel? and T, f = PL, f for all feH*?,

where P denotes the projection from L* onto H* Then the joint
spectrum of L, is a subset of the joint approximate point spectrum
of Ty, ie., 0(L;,)Co(Ty). If, furthermore, all Ty, k=1, ---, n, are
analytie, i.e., all ¢, belong to H*, then the joint spectrum of T, is
the closure of the joint residual spectrum of it. (Consult Dash [5].)

ProposITION 1. If A= (A4, -+, 4,) is a commuting n-tuple of
normal operators, then | A| = w(A) = r(A4), and so A is joint
normaloid.

Proof. Since o(A) = 0.(A), it follows that w(4) = r(A). On the
other hand, it follows that

14l = sup{| S 160 FL A @ Ha: 1 £ = 1]
and
P4y = sup {33 2% g fte X: 3 16,(8) — 2 < ¢} ) >0 for any ¢> 0},
from the definition and the above Dash’s results. Since
r({tex: Blsor > ) =0,

it follows that
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[ S s8I rOF@w® = ray-{1f e = Ay £
Hence [|A]|| < 7(A). So, the proof is complete.

ProPOSITION 2. If Ty = (Ty, -+, Ts,) is an n-tuple of Toeplitz
operators, then ||Ts|| = w(Ty) = r.(Ts), and so T, is joint normaloid.
Moreover, if Ts; is an n-tuple of analytic Toeplitz operators, then
| Ty |l = w(Ts) = r(T).

Proof. It holds that || T, < || Ls|| = r(Lyg) < r.(Ts) = w(Ty) =
| Ts]|. So, the first half is proved. Moreover, if Ty, ---, T,, are all
analytic, then o(Ty) = 0.(Ts) c W(T;). Hence

r(Ty) = r(Ty) = w(Ty) ,

and so the latter half is proved, too.

3. The bare points and extreme points of the joint normal-
oid operator-family.

DEFINITION 4. Let K be a bounded and connected set in C™.
The point « of K will be called an extreme point of K if no line
segment joining any two points of K other than « contains «. And
the point B of K will be called a bare point of K if there exists
a spherical surface through B such that no points of K lie outside
this spherical surface.

The set of the bare points of K is included in the set of extreme
points of K and dense in it (ef. Berberian [2], p. 181).

THEOREM 2. Let A= (4, ---, A,) be an n-tuple of operators
such that A —z = (A, — 2, ---, A, — 2,) 18 joint normaloid for every
point 2 = (2, +-+,%,) i C*. If a = (ay, ---, a,) 1s an extreme point

of W(A), then «a belongs to the joint approximate point spectrum
o.(A) of A. If, moreover, a is a bare point of W(A), then a is a
joint eigenvalue of A.

Proof. Observing the joint approximate point spectrum is closed,
it is sufficient for the proof to show that aco.(4) if a is a bare
point of W(A4). So, now, let a be a bare point of W(A). Then there
exists a spherical surface S with the central point z = (z,, ---, 2,)
such that no points of W(A) lie outside S and « is on S. Thus,

(Bl — k) =wd -2 =[4-2|
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and there exists a sequence {x,} of unit vectors such that
(A, — 2oy, ) — 0, — 2t —— 00), k=1 -+, m.

Consequently,
3 (4 — @z = 3114w — 203 — (@ — 2w
= 3 11(4s =z — 2-Re 3 @ — 2)(As — 2w, @)
+ Sl — a0 ().

Hence a€o.(A). The latter half is also proved in the same way as
the first half.

REMARK. In the case of a single operator, if A — z is normaloid
for every complex number z, Hildebrandt [7] said A to belong to
operator-class C..

COROLLARY 1. For any n-tuple A= (A, ---, A,) of operators,
w(A) = ||A]| if and only if r-(4) = ||A|.

COROLLARY 2. Let A= (4, ---, A,) be an n-tuple of commut-

ing normal operators. If a 1s an extreme point of W(A), then
aeo.(A). If a is a bare point of W(A), them a is a joint eigenvalue
of A.

COROLLARY 3. Let A= (A, ---, A,) be an n-tuple of Toeplitz
operators. If a is an extreme point of W(A), then a € o.(4).

Dash [4] has shown that W(A) is convex, if A =(4, ---, 4,) is
a commuting n-tuple of normal operators or an #n-tuple of Toeplitz
operators (see Thm. 2.5 and Thm. 2.6 in {4]). Now, we recall that
d(A) = g.(A) c W(A) if A is a commuting n-tuple of normal operators.
And if T, is an n-tuple of analytic Toeplitz operators, then o(T;) =
o, (T,)c W(T,). Consequently, we get the followings.

COROLLARY 4 ([4], Thm. 2.8). Let A=(A, ---, A,) be a com-
muting n-tuple of normal operators. Then we have

> (a(4) =W(4),
where S, (6(A)) denotes the convex hull of o(4).

COROLLARY 5 ([4], Thm. 2.10). Let T; = (T,, ---, Ty,) be an
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n-tuple of Toeplitz operators. Then we have
2. (0(Ty)) = W(T,) .

COROLLARY 6 ([4], Cor. 2.11). Let Ty = (T, ---, Ts,) be an n-
tuple of analytic Toeplitz operators. Then we have

2. (0(Ty) = W(T,) .

In the case of single operators, Klein [9] has shown that the
numerical range of a Toeplitz operator has no extreme points if it
is nonconstant. Next, we shall generalize his result for the case of
operator-families.

PROPOSITION 3. Let Ty = (T, -+, Ty,) be an n-tuple of Toeplitz
operators. Unless the joint numerical range of T, consists of only
one point, it has mo extreme points and so it is an open set.

Proof. Now, suppose that there exists an extreme point in
W(T;) and that z = (2, ---, 2,) is its point. Then there exists an
n X m unitary matrix U:

(2 P RN £ 7P
Ue |10
anl' ¢ * awn
such that the point a2, + a,2, + --- + a,,2, in C is the extreme

point of the numerical range of the operator T = a,Ty, + Ty, +
-+ + a,T,;, and T is nonconstant. So, since the operator T is also
Toeplitz, it is impossible from Klein’s results. Therefore, the joint
numerical range of T; has no extreme points.

We would like to express our thanks to the referee for his
useful comments.
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