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One time-honored way of studying the properties of a
vector measure F with values in a Banach space X, with
dual X* is to examine properties of the family of scalar
measures {<&*, F>: x* e X*, || x* || ^ 1}. The purpose of this
paper is to undertake a similar study for vector-valued
functions. The first theorem proved in this vein was the
classical Pettis measurability theorem which states that if
X is a separable Banach space and / is an X-valued
function such that <a?*, /> is measurable for each x* in X*,
then / is a measurable function. What we propose to do
is to take a bounded function / with values in X, form
the associated family ^ = {<#*, />: x*eX*, ||a?*|| ^ 1} and
study how measurability and integrability properties of /
are reflected by topological properties of ^ in the spaces
Loo and B(Σ).

Throughout this paper (Ω, Σ, μ) is a finite measure space and X
is a Banach space with dual X*. A function / : Ω -^ X is (μ-) meas-
urable if it is the a.e. limit of a sequence of simple functions.
Standard arguments show that if μ is a Radon measure, then μ-
measurablity is equivalent to Lusin /^-measurability, which means
that for every compact set KaΩ and for every number δ > 0 there
is a compact set Kf czK such that μ(K\Kf) < δ and / restricted to
Kf is continuous. The function / is weakly (μ ) measurable if <#*, />
is measurable for all x* in X*. If X is the dual of a space Y, then
/ is weak*-(μ-) measurable if </, y) is measurable for all y in Y. A
function f:Ω->X is weakly equivalent to a function g: Ω —> X if
(x*y / ) = (χ*t #>a.e., for every x* in X*. If X is the dual of space
&r, then / and g are weak*-equivalent if </, #> = (g, y) a.e., for all
y in gΛ

A weakly measurable function f:Ω—>X is Pettis integrable if

for each E in Σ there is an element P — \ /dμ in X such that

1* The family {<>*, />: ||α* || ^ 1} as a subset of Loo(μ). In this
section we shall study a bounded function f:Ω^X in terms of
topological properties of the associated family {(x*, />: ||&*|| ^ 1} as
a subset of the space Loo(μ).
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For the first lemma recall that (L«,(/*))* consists of all finitely
additive bounded signed measures on Σ that vanish on μ-null sets.

LEMMA 1. // / : 42 —> X is bounded, weakly measurable and Pettis
integrable with respect to all λ in (Loo(μ))*, then {(x*, / ) : ||cc*|| ^ 1}
is a relatively weakly compact subset of Loo(μ).

Proof. Let «&*, / » be a net in {<#*, />: ||a?*|| ^ 1} and select
a weak*-convergent subset (as*) of (x*). Let x* be the weak*-limit
of (xf) and observe that for λ in Loo{μ)* one has by Pettis inte-
grability

lim ^<a>*, f)dx =

^ o * , P -

Thus (&*, /) has a weakly convergent subnet and the proof is complete.
The first part of the following theorem is well-known (see [1,

p. 88]). Its proof is reproduced here mainly to obtain an easy proof
of the second part.

THEOREM 2. If f: Ω —> X is bounded and weakly measurable and
if the set {(x*, / ) : \\%*\\ S, 1} is relatively weakly compact in L^μ),
then there exists a measurable function g: Ω —• X** such that f is
weak*-equivalent to g.

If, in addition, the function f is Pettis integrable with respect
to μ, then there is a measurable function g: Ω —> X such that f is
weakly equivalent to g.

Proof. Define an operator T: X* -> L^μ) by Tx* = <#*, />. By
hypothesis, the operator T is weakly compact and by Gantmacher's
theorem so is its adjoint T*. Consider the restriction T^'.L^μ)-^
X**. As a weakly compact operator, this operator is representable
[1, III. 1]. Accordingly there exists bounded measurable function
g:Ω^X** such that Γ*(/) = (Bochner-)ί fgdμ for all / in Lx(μ).
In particular if EeΣ and #*eX*, then

*, f>dμ = t <x\ f)XEdμ
)Ω

= (\Egdμ, x

= f (g, x*)dμ .
JE
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Since this equality obtains for all #* in X* and E in Σ, it follows
that / is weak*-equivalent to g.

To prove the second assertion suppose / is Pettis integrable.
Since g is Bochner integrable, we see that

= \ (g, x*)dμ = (Bochner-)\ gdμ, x
}E JE

r
for all E in Σ and all x* in X*. It follows that (Bochner-) 1 gdμ e

JE

X for every E. From this and the argument used to prove [1, III.
3.2] we see that g has almost all of its values in X. Redefine g to
be zero on the exceptional set and observe that <x*, g) = <&*, />
a.e., for all #* in X*. The completed the proof.

One question knocking about for the last couple of years was
whether a bounded weakly measurable function f:Ω->X is Pettis
integrable if the family {<#*, />: \\x* || ^ 1} is I/oo(μ)-relatively weakly
compact. The truth is that this question had been solved before it
was asked. In 1940, Phillips [3] gave an example of a non-Pettis
integrable function / : [0, 1] —»ioo[0, 1] that is bounded and weakly
measurable and has the property that {(x*, />: #* e (L>[0, 1])*} is a
one-dimensional subspace of Loo(μ). It follows directly that this
function is not weakly equivalent to a measurable function, and this
shows the assumption of Pettis integrability cannot be dropped in
Theorem 2.

The next theorem sets up a link between weak equivalence to a
measurable function and universal Pettis integrability. Although
the Pettis integral is usually defined with respect to countably
additive measures, the definition directly extends to finitely additive
measures. Familiar properties of the integral remain unchanged in
this new context. For example, if f:Ω~^X is Pettis integrable
with respect to the finitely additive measure λ and if T: X —• Y is
a bounded linear operator, then Tof is Pettis integrable and

\ Tofdμ =

THEOREM 3. A bounded weakly measurable function f:Ω-*Xis
weakly equivalent to a measurable function if and only if for each
set B in Σ with μ(B) > 0 there is a subset A of B with μ(A) > 0
such that fXA is X-Pettis integrable for all λ in (

Proof. Assume / is weakly equivalent to a measurable function
g: Ω -> X. Fix B in Σ with μ(B) > 0. Take a sequence (gn) of
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simple X-valued functions that converges to g μ-almost everywhere.
With the help of Egorov's Theorem, choose a subset A of B with
μ(A) > 0 such that the convergence is uniform on A. It is now
clear that gXA, as the uniform limit of simple functions, is integrable
(in the sense of Dunford and Swartz [2]) with respect to every X in
(Loo(μ))*. Now fix X in (-Mμ))*, fix E in Σ and fix x* in X* and
note that

( <x*,f)dx=\ (x*,g)dx
JEΠA JEΓlA

= (x*, \ gdx) .
\ JEΠA I

It follows directly that

Γ f
Pettis - fdx = \ gdx

JEKA JEOA

for every E in Σ. This proves the necessity.
To prove the converse, use Lemma 1 and Theorem 2 to see that

for each B in Σ with μ(B)>0 there is a subset A of B with μ(A)>0
such that/Z^ is weakly equivalent to a measurable function gA: Ω-^X.
By a standard exhaustion argument [1, III. 2.4] we can find a disjoint
sequence (AΛ) in Σ whose union is Ω such that for each positive
integer n there is a measurable gn: Ω —»X such that flAn is weakly
equivalent to gn. Define g: Ω -* X by #(ω) = fjrn(α>) if ωeAn and
observe that # is measurable and that / is weakly equivalent to g.
This completes the proof.

2. The family {x*f: \\x*\\ ^ 1} as a subset of B(Σ). Again in
this section we shall study the family {(x*, />: ||α* || ^ 1} for a
bounded weakly measurable f:Ω-^X, but this time we shall study
it as a subset of ^(I7), the space of all bounded measurable functions
on Ω equipped with the supremum norm. In the last section we
saw that Loo(μ)-relative weak compactness of {<&*,/>: ||α?*|| ^1} is
not quite enough to force / to be weakly equivalent to a measurable
function. We shall see that the more stringent requirement that
{(%*, f): IN* II = 1} b e relatively weakly compact in B{Σ) is enough.

THEOREM 4. Let f:Ω-+X be bounded and weakly measurable.
If {(%*, f): \\χ*\\ = 1} is relatively weakly compact in B(Σ), then f
is weakly equivalent to a measurable function g: Ω —> X.

Proof. The relative weak compactness of {<#*, />: ||cc*|| ^ 1} in
B(Σ) patently guarantees the relative weak compactness of this
family in L«>(μ). A glance at the second part of Theorem 2 shows
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that we will be done once we have shown that / is Pettis integrable.
To this end, let E e Σ and x* e X* and consider the functional

>*, f>dμ

defined on X*. If we can show this functional is weak*-continuous,
then we shall be done, for in this case there is xE in X such that

<x*> XE) = \ (x\ f)dμ
JE

for all x* in X*. To show this functional is weak*-continuous, it is
enough by [2, V. 5.6] to show that this functional is weak*-continuous
on the closed unit ball. To this end, let (#*) be a net in the closed
unit ball of X* that converges weak* to some x* with \\x*\\ ^ 1.
The net (x*, /> then converges pointwise to <#*,/>. Since <#*, / ) is
a net in a weakly compact subset of B(Σ), it follows that limα <#ί, / ) =
<£*, /> weakly in B(Σ). Since μeB(Σ)*, we have

lim ί <a£, f}dμ = \ (x*, f}dμ .
a JE JE

This proves that the functional

x* > \ (x*, f)dμ
JE

is weak*-continuous on bounded subsets of X*. This completes the
proof.

COROLLARY 5. Let f:Ω—* X* be a bounded weak*-measurable
function. If {</, x): \\x\\ ̂  1} is a relatively weakly compact set in
B(Σ)9 then f is weakly measurable and there is a measurable g: Ω-+
X* such that f is weakly equivalent to g.

Proof. Take #** in the unit ball X** and pick a net (xa) in
the unit ball of X such that lirnaxa = x** in the weak*-topology.
Then the net (</, xa)) converges pointwise to (x**, />. Since (</, xa})
is a net in a weakly compact of B{Σ)9 it follows that <#**, /> belongs
to B{Σ) and limβ </, xa) = (x**, /> weakly in B(Σ). It follows directly
that

is relatively weakly compact in B(Σ).
Local (in the style of the statement of Theorem 3) converses to

Theorem 4 and Corollary 5 are also true and are easily proved with



80 ROBERT F. GEITZ AND J. J. UHL, JR.

the help of Egorov's theorem. The global converses fail as the
following example demonstrates.

EXAMPLE 6. Let μ be Lebesgue measure on the Borel measurable
subsets of (0, 1) and let An = [I/O + 1), 1/ri) for n = 1, 2, - . Let
(O be the unit vector basis of ίx and define / : (0, 1) -> k by f(t) = en

for t in An and note that / is measurable. Letting Σ be the Borel
subsets of (0, 1), one sees that there is an obvious isomorphism from
loo into B(Σ) under which {<#**, />: #** eL, ||cc**|| ^ 1} is isomorphic
to the unit ball of the unit ball of Zoo and {(x, />: xecQ, \\x\\ ^ 1} is
isomorphic to the unit ball of c0. Evidently neither of these sets
is relatively weakly compact in B(Σ).

Replacing the weak compactness condition by a separability
condition leads to a characterization of functions that measurable
with respect to Radon measures.

THEOREM 7. Let Ω be a compact Hausdorff space and let Σ be
the σ-field of Borel subsets of Ω. Let μ be a regular Borel measure
on Σ. Then a bounded weakly-μ-measurable function f:Ω—>X is
μ-measurable if and only if for each A in Σ with μ(A) > 0 there is
a Borel set B with B £ A with μ(B) > 0 such that the family

is separable in B(Σ).

Proof. Suppose f:Ω—*X is ^-measurable and A is a Borel set
of positive ^-measure. Let (/J be a sequence of X-valued simple
Borel measurable functions that converges to / /^-almost everywhere.
By Egorov's theorem there is a Borel set B £ A such that μ(B) > 0
and the convergence is uniform on B. Evidently the family
{O*, /J*>: || α* || ^ 1, w = 1, 2, 3 •} is separable in B{Σ) and {(x*, fXB):
|| a;* || ^ 1} is in its closure. Hence {(x*, fXB): \\x*\\ ^ 1} is separable.

For the converse, a standard exhaustion argument shows that
there is a disjoint sequence of Borel sets (An) such that μ(Ω\\J»=ι An) =
0 with the property that {<#*, fXA% >: ||cc*|| ^ 1} is separable in B(Σ).
If it can be shown that fXAn is μ-measurable for each n, then it will
be shown that / is ^-measurable. Thus there is no loss of generality
in assuming that {<#*, />: ||sc*|| ^ 1} is separable in B{Σ). Assuming
this, we see that there is a sequence (φn) of bounded scalar valued
functions with the property that for any x* in the unit ball of X*
there is a subsequence of (<f>n) that converges to <#*, /> uniformly
on Ω. We can and do assume each φn is a simple function. For each
n write
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Pn

Φn = Σ ^i,n^Έi n

where for each fixed n{Ettn}Ui is a partition of Ω into Borel sets and
the ai>n's are scalars. Let ε > 0 . With the help of Lusin's theorem
pick compact subsets Fitn of Eitn such that φn\F. n is continuous for all
n and i and such that μ(Ω\\JUiFi>n)<ε/2n. Observe that ^lu^<,» i s

continuous. In addition note that if

then Fε is compact and μ(Ω\Fε) < ε. Furthermore note that each
function φn\Fε is continuous. Since for each x* in the unit ball of
X* the function (x*, f) is the uniform limit of a subsequence of (φn),
it follows that f\Fε is weakly continuous. Since the identity on X
is weak-to-norm universally Lusin measurable [5, p. 162 Theorem 3]
and ε > 0 is arbitrary, this proves that / is (Lusin) ^-measurable
and completes the proof.

We have not succeeded in generalizing Theorem 7 to general
finite measure spaces.

Example 6 gives an example of a Borel measurable function /
such that {<#*, />: \\x* || <; 1} is not separable in B(Σ). On the other
hand an easy corollary of the proof of Theorem 7 gives a sufficient
condition for universal Lusin measurability.

COROLLARY 8. Let Ω be a compact Hausdorff space and let Σ be
the σ-field of Borel subsets of Ω. If f: Ω —> X is a function such
that <#*, /> is in B(Σ) for all x* in X* and the family {<#*, / ) :
\\x*\\ ί£ 1} is separable in B(Σ), then f is universally Lusin meas-
urable.

3. Pettis integrability and regulated functions* This section
is devoted to two isolated theorems. The first deals with Pettis
integrability; we believe this result to be the only known theorem
that gives a sufficient condition for Pettis integrability and is appli-
cable to some functions that are not weakly equivalent to measurable
functions. The second result is a simple theorem dealing with re-
gulated functions on [0, 1],

THEOREM 9. Let Ω be a compact Hausdoff space. If f:Ω->X
is a bounded function such that <#*, /) is of the first Baire class
for each #* in X*, then f is Pettis integrable with respect to every
regular Borel measure on Ω.
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Proof. Let E be a Borel subset of Ω and μ be a regular Borel
measure on Ω. The hypothesis together with Alaoglu's theorem
guarantees that the family {<#*, />: ||cc* || ^ 1} is a pointwise compact
subset of the first Baire class. According to a fundamental theorem
of Rosenthal [4, p. 362], if (α£) is a net in the unit ball of X* that
converges to x*eX* in the weak*-topology, then

lim ί <a£, f)dμ = \ <x\ f}dμ .
a JE JE

Hence the functional

Γ (x*,f>dμ
E

on X* is weak*-continuous on bounded sets. An appeal to a standard
theorem [2, V. 5.6] shows that this functional is weak*-continuous.
Hence there exists xE in X such that

= \
JE

\ f)dμ

for all x* in X*. Since E was arbitrary and so was μ, the proof
is complete.

Often functions are proved to be Pettis integrable by proving
they are weakly equivalent to Bochner integrable functions. This
is not the case with Theorem 9. In fact the next example shows
that Theorem 9 is genuinely a theorem about the Pettis integral.

EXAMPLE 10. Define / : [0, 1] -+ L40, 1] by f(t) = XίOftl. Note
that if λ is in (Loo[0, 1])*, then <λ, /(£)> = λ([0, t]), a function of
bounded variation on [0, 1]. Hence <λ, /> is of the first Baire class
for all λ in (Loo([0, 1]))*. By Theorem 9, the function / is Pettis
integrable, with respect to every regular Borel measure. It is easily
checked that / is not weakly equivalent to any Bochner integrable
function (see [1, II. 2.8]).

According to Theorem 9 if / : [0, 1] —»X is a bounded function
such that (x*, /> is absolutely continuous for each #* in X*, then
/ is Pettis integrable with respect to Lebesgue measure. The next
theorem shows that if it happens that the family {<#*, />: \\x*-\\ ^ 1}
is weakly compact in the space of absolutely continuous functions,
then / has a very strong measurability property.

Recall that a function / : [0, 1] —»X is regulated if it is the
uniform limit of functions of the form Σ?=i χJ~in where xneX and
each In is a subinterval of [0, 1].
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The space AC[0, 1] is the space of all absolutely continuous func-
tions on [0, 1] equipped with the variation norm.

THEOREM 11. Let f: [0, 1] —> X be a bounded function such that
<#*, / ) is absolutely continuous for each x* in X*. If the family
{(%*, f): Il**|| ^ 1} is relatively weakly compact in AC[0, 1], then f
is a regulated function.

Proof. By the hypothesis and [2, IV. 13.31] the family
{(%*, f): | |**| | ^ 1} is equi-absolutely continuous on [0, 1]. Let ε > 0
and partition [0, 1] into subintervals {In} such that for each n each
of ^~ has total variation less than ε on IΛ. Evidently this means
that the diameter of f(In) is less than or equal to ε for each n.
Consequently / is regulated.
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