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A FIXED POINT THEOREM IN ¢,

E. OpELL AND Y. STERNFELD

It is proved that if K is the closed convex hull of a
weakly convergent sequence in ¢, then each nonexpansive
mapping 7: K > K has a fixed point.

1. Introduction. The general problem with which we are
concerned is: classify the weakly compact convex subsets K of a
Banach space such that every nonexpansive mapping 7 of K into
itself must necessarily have a fixed point. (7T is said to be nonex-
pansive if [[To — Ty|| < ||z — y|| for all # and y in K.) We study
this problem for the Banach space c,.*

Section II is devoted to the proof of the theorem stated in the
abstract, and §III to some extensions of it. For the present we
wish to recall some known results in this area, and to explain why
the space ¢, may be of special interest.

The problem posed above is of the following type: Let K be a
subset of a locally convex topological vector space and T: K — K a
mapping. Give conditions on K and T which insure T will have a
fixed point.

The Tychonoff fixed point theorem [14] says if K is compact,
convex and T is continuous then 7T has a fixed point. Banach’s
fixed point theorem [1] says if K is closed and a subset of a Banach
space (more generally a complete metric space) and T is a strict
contraction (||Tx — Ty|| = allx — y|| for all , y in K and some a < 1)
then T has a unique fixed point.

Our problem may be viewed as combination of these two the-
orems. Note however that there is a strange feature in this com-
bination: the condition on K concerns the weak topology while that
on T concerns the norm topology. The seeming lack of connection
between these conditions is what makes the problem so interesting
and challenging.

From now on let us assume that K is a given convex weakly
compact subset of a Banach space X and T: K — K is nonexpansive.
Of course by translation one may assume 0c K. Then for all 0 <
r<1,rT:K— K and rT is a strict contraction. By the Banach
theorem 7T has a unique fixed point x, and it is easily seen that
|Tx, — x,]| —0 as » —1. Thus there always exists a sequence of
“approximate fixed points” for T. The points {x,},<,«.(x, = 0) form
a continuous curve in K. In fact it can be seen that if 0 <7 <

1 D. Alspach [0] has recently given the first example of a weakly compact convex
set K and a nonexpansive mapping on it without a fixed point.
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s <1 and d = diameter K then |z, — ]| < (s — r)d(1 — ). Of
course if {z,} were norm convergent as » — 1 then its limit would
be a fixed point for T.

The most general positive result appears to be a theorem of
Kirk [10] which says if K has normal structure then 7 has a fixed
point. (See also [3], [4] and [8].)

A point z e K is said to be diametrizing for K if diameter K =
sup,.x |l — yi|. K has normal structure if each convex closed sub-
set H of K with a positive diameter contains a point which does
not diametrize H. It is known that if X is uniformly convex then
K has normal structure [2]. An interesting proof of Kirk’s theorem
was given by Karlovitz [9] where he proved the following proposi-
tion: if K is minimal with respect to T (i.e., no smaller closed con-
vex subset is 7T invariant) and {y,} is a sequence in K so that
lim, .. [Ty, — v,|| = 0 then for all x€ K, lim, ... || — ,|| = diameter
K. In the same paper Karlovitz also showed that normal structure
is not necessary. He was able to renorm [, so that the closed con-
vex hull of the unit vectors failed normal structure, yet still every
weakly compact convex set had the fixed point property for nonex-
pansive mappings.

However all known positive results depend in some way or an-
other on convexity properties of the norm. Our approach to the
problem has been to study the case X = ¢,, a space whose norm
fails any nontrivial convexity property. It is also easy to find
K ce, that fail normal structure; for example, let K be the closed
convex hull of the unit vectors of ¢,. (Note that our main result
shows that this set has the fixed point property for nonexpansive
maps.)

But the space ¢, possesses another property which in a sense
compensates for the lack of convexity of the norm, and might in-
dicate that each weakly compact convex subset of ¢, has the fixed
point property. Namioka [12] proved that in every weakly com-
pact convex subset K of a Banach space X theset D = {ze K; {x,}]CcK

and ocniv» x implies ||z, — «|| — 0} is a weakly dense G, subset of K.
We have noticed that if X = ¢, then D is in fact norm dense in K.
Of course T is weakly continuous at each point of D. Thus, if one

could find {y,}c K with ||Ty, — ¥.|| > 0 and ¥, “ Y, € D then y, would
be a fixed point of 7. Unfortunately we were unable to do this.
R. Haydon and the authors [5] have recently shown that an-
other class of weakly compact subsets of ¢, have the fixed point
property for nonexpansive maps. Namely the “coordinatewise star
shaped” sets K. Say K is coordinatewise star shaped if there ex-
ists a point x € K so that if y € K and z lies coordinatewise between
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2 and y then ze K. Of course such sets need not be convex.

For additional information on the fixed point problem we refer
the reader to [13] and the references listed therein.

We wish to thank the referee for his useful suggestions.

We use standard Banach space terminology as may be found in
[11]. Let us just mention some of the most frequently used nota-
tion. ¢, is the Banach space of all sequences of reals converging to
0. For xzecc, we denote by x(n) the nth coordinate of z i.e., © =
(x(1), ©(2), ©3), +-+). || ||~ is the supremum norm on ¢, i.e., ||2|. =
sup,le(n)]. If xeq4, ||z|, = D |2@)|. If E is a subset of the posi-
tive integers N then z|E is the vector defined by z|E(n) = z(n) if
nekl and x|En) =0 if n¢ . ~FE is the complement N/E of E.
For p, g€ N, [p, q) denotes the set {ie N: p<i<q}. For r=0[z—7r]"
is the vector so that [z — r]*(n) =2x(n) —»r if x(n)=r and
[x — ]*(n) = 0 otherwise. We write z, z x(x, Y x) if (x,)5-, con-
verges weakly (weak™) to x.

By conv(x,);.r we mean the convex hull of {x,: i€ F} and conv(x,)
is the closed convex hull.

1I. The main result.

THEOREM 1. Let K be the closed convex hull of a weakly con-
vergent sequence im ¢, and let T: K — K be nonexpansive. Then T
has a fixed point.

The general plan of proof is as follows. First we may assume
that K = con{x;}y, where xiﬁo and ||2;]| 1 for all 7. Let {y,}5,
be a sequence of approximate fixed points for T (|Ty, — v.| — 0).
By passing to a subsequence we may assume vy, kit Yo and ||y, — Yol — 7.
If » =0 we are done, so we assume 7 > 0. We shall construct a
new set {w}.., of approximate fixed points for 7' (lim._, || Tw* — w*||=0)
so that w*® is norm convergent to some z¢ K.

A special case. Before proceeding to the general case whose
argument is quite technical we briefly sketch the proof in the
gspecial case where K = K, is the closed convex hull of the unit
vector basis {¢,};-, of ¢, (i.e., K, ={x = (X, %, ---)E€ECr 2, =0, D2, 2, <
1}). An understanding of this easier case will make the sequel
much more comprehensible. Of course we have no intention of
giving all the details twice, and so we shall now take certain liber-
ties.

We shall show that [y, — 7]* is a fixed point for 7. First (since
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Yo iyo) we shall assume (by passing to a subsequence) that y,, y, —
Yo, Y — Yy, +-- are disjointly supported elements in K. (Of course
in the general case we shall need an argument to show they are in
K, and we shall only be able to assume they are “almost” disjointly
supported.) Also let us assume ||y, — ¥,|| = = for all =.

Fix 0 < e < 7/2. Define z, = [(y;, — y,) — (r — &)]* for ¢ =1 and
2= [¢y, — (r — &)]*. Thus {2}z, € K and are disjointly supported in

Yo
, \ yi—X Y2 — Yo

FIGURE 1

¢, (see Figure 1). Of course z, might be 0. Let w* = >7,2, where
m is the largest integer such that w:e K. If we use ||z|, to denote
the 4 norm of a vector xz ¢ K, this means that m is the largest
integer so that |[we], = 3", |2, = 1. It is easily seen that for
1=1

€
¢ = llaill = —

’

and so

lwel,=1— 2.
r

Now for1 71 m
ly: —w]=r—e.

This is because we have divided y, into y, and ¥, — ¥, and we have
chosen w° to be of distance 7 — ¢ from each piece. Thus, by the
nonexpansiveness of T, ||[Ty, — Tw’|<r—¢ 1= m. [Ty, — v
could have been made as small as we pleased, thus up to an error
which we can control we also have ||y, — Tw| < r —e. Since w*
is the (coordinate-wise) small vector in K among all vectors & with
ly; — x| = r —¢ (1 £m), we conclude that Tw®= w* and hence
Tw® = z; (coordinate-wise) for 0 <7< m. But the z,/’s were dis-
jointly supported and their 4 norms summed to almost 1 (up to ¢/7).
Thus Tw* is essentially equal to w* (again up to ¢/r). Ie.,
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|| Tw® — w¢|| - 0 as ¢ > 0. On the other hand it is easily seen that
w* converges in norm to [y, — »]*. This concludes the special case.

The general case. The proof will be divided into two parts.
In the first part we shall study the structure of those weakly com-
pact sets in general Banach spaces which are the closed convex hull
of a weakly null sequence. In the second and more difficult part
we shall apply the results of the first part to prove the theorem
in ¢,. Our first lemma will enable us to assume y, — y,€ K.

LEMMA 1. Let {a"}2.,CB(A)*={xe4:2=0,|z|,<1}. If no
subsequence of {a"} comverges in the 4 morm, then there exists a
subsequence {a™} of {a"}, a wvector a’c B(4)" and a sequence {8'}C
B(£)* so that

(i) av%a,

(i) [la™ — g, —0,

(i) B, — a,eB(4)* for 1=1,2, ---.

Proof. By passing to a subsequence we may assume a”ﬂa"e
B(»), la* — a’|, > >0 and ||a*]|, >7 > 0. Clearly ||a°||, <7 (or
else |la” — a’||, > 0). Let ¢ < min{r/10, (z — ||a°||,)/10}, and choose 7.
such that >}, a’() <e. Choose %, large enough such that n > n.
implies [[(a"—a)|uz:ylli<e, and ||a”|,—7|<e. Let \* = max{a™, a’}e
4. (The max is taken coordinate-wise.) We claim that ||a™ — )¢, <
2¢. Indeed if I'={i:1<14} and J = N/I, then |(a™ — \9)|,|l,=
2 (@(g) — a™(j)) < e where J' = {jeJ: a’(j) > a™(j)}, while

It = M)l £ 3 Jare(d) — (i) <&

The only problem with )¢ is that it may happen ||1¢||, > 1. Of
course |\||, <1 + 2. We wish to perturb ¢ to get an element in
B(4)* which is still larger than a° (and close to a™). To see that
this is possible we must show that the mass of \* which lies above
a® is larger than 2¢. Now this mass is precisely |\ — ||, = |\, —
lall;, and [N, = [|&]l, > [la™|, — [[a’], > 7 — e = [[a’[|, > 10 — & =
9¢. Define 8¢ as follows. Let 6 = ||A¢]|, — 1. We know & < 2. If
0=<0set g2=2n. If 6 >0 then we define B to differ from \* only
in some coordinates j at which A°(5) > a’(j). Since > .zmhswun(W(F) —
a’(5)) > 9¢ it is possible to reduce \° at some of these coordinates
to get B¢ which satisfies g°e B(4)*, 8= «°, and ||g° — \°|| < 2¢ (and
hence ||3* — a™|| < 4¢). The lemma follows by repeating this process
for ¢, — 0. ]

Let X be a Banach space and let {z;}, be a weakly null sequ-
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ence in X with ||«;]| =1 for all ¢. Define f:4—X by fla)=
S, a(i)x, for aes. Clearly f is linear and ||f|| < 1. Also it is
easily seen that f|B(4)* is continuous with respect to the w* topo-
logy in 4 and the weak topology in X.

LEMMA 2. Let K be the closed comvex hull of the weakly null
sequence {x;} in X. Let {w,} be a sequence in K. Then if no sub-
sequence of {w,} converges in morm in X, there exists a subsequence
{w,} of {w,}, y€ K and a sequence {y,} in K so that

(1) Wa, > Yo

(i) v, — y, € K, for all 4.

Proof. This follows directly from Lemma 1, the continuity pre-
perties of the function f defined above, and the fact that f(B(4)*) =
K. [

For K as in Lemma 2 and y € K we define

lyl, = inf{||all;: a € B(4)*, fla) = y} .

LemMMA 3. {yl, has the following properties:

(i) for each ye K there exists some a € B(A4)* so that fla) =y
and |jall = |yl

(i) |y, =0 of and only if y =0,

(iil) if yeK,t> 0 and tye K then |ty], = tlyl,

(iv) if y,z and y + 2 are in K then |y + 2, = |yl + |2l

(v) lyl=llyl.

Proof. If ye K, B()*Nf'(y) is a w* compact subset of 4 and
the <4 norm attains its minimum on such sets. This proves (i) and
the other properties are equally easy to check. 1

LEMMA 4. Let K be as in Lemma 2, and let H %= @ be a weak-
ly closed subset of K. Let v = inf{lw|:weH} and H = {zc H:
|z], = t}. Then

(i) H # @,

(ii) H' is norm compact in X,

(iii) ¢f H s convex then H' is convex too.

Proof. (i) Let {z,)CH such that |z,|,| 7 and choose a” e B(4)*
with ||a*|, = |2.|, and f(a”) = z,. By passing to a subsequence we
may assume a”w—ta" and thus since H is weakly closed z, =
fla®) 2 fla) = z,e H. Clearly ||, < lim [la*||, = = and so |z}, < 7.
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By definition of 7, |%,|, = 7 and so z,€ H'.
(ii) Let {z,} c H’, and let {a"} C B(4)* be so that f(a®) = z,,
*
la*ll, = |z,l,=7. Let a"?s a*. The argument in (i) shows z, =
fley e H', and zniiv»zo. We claim ||z, — 2| — 0. But this follows
from the observation that ||a™ — a’||; — 0 which is easily checked.
(iii) If y,zeH' and 0<¢<1, then |ty + 1 — )z|, = tlyl, +
(1 —¢)|z, =7 and so if H is convex then by the definition of =,
[ty + (1 — t)z|, = 7. 1

Let us review the situation at present. T is a nonexpansive
mapping on K = con{x;}, «, %0 and [le;|| £ 1. Let w, be a sequence
of approximate fixed points for T(|Tw, — w,| — 0). If some sub-
sequence of {w,} converges in norm its limit is a fixed point for 7.
If not, then by Lemma 2 there exists a sequence {y,} C K so that

Yo — Yoy | T — ¥all = 0, ¥, — yoe K for all u, and ||y, — y,|| —7 > 0.
For ye K and s > 0 define

H(y,s)={zeK:|ly —z|| < s},
and

H'(y, s) = {z€ H(y, s): |z|, = inf{jw|,: we H(y, s)}} .

Clearly H(y, s) is weakly closed and convex and so by Lemma
4, H'(y, s) is nonempty, convex and norm compact in X. The thrust
of the proof will be to show H'(y, 7) is invariant under 7', and
hence T has a fixed point (in H'(y, 7)). Unfortunately we can
prove the invariance of H'(y, 7) under T only if we assume X = ¢,.
This begins the second stage of the proof. We shall henceforth
write ||z for |[%]|«-

LEMMA 5. H(y,, r) is invariant under T.

Proof. Let ze H(y,, r). Since v, A 9, and ||y, — y,|| — 7 it fol-
lows that limsup, ||z — .|| < 7. Indeed, if not then we may assume
without loss of generality that ||z —y,[l =7+ ¢ and ||y, — %] <
r + ¢/3 for all » and some ¢ > 0. Let 0 < 46 < ¢/3 and choose %, so
that 7 > 4, implies |y,(?)|, |2(%)] < 6 (here we use ¥, z€¢,). Choose
n, so that n = n; implies |y,(t) — ¥,(3)] < & for i < 4,. Fix n = n;.
If © <4 then [2(7) — ¥.(0)| = [2(%) — YD) | + |Y(D) — v.(D <7 + 0 <
r + ¢ and if ¢ = 4, then [2(3) — y.(D)| = [2(D)]| + |y(D| + [[%o — v.]| £
20 + 7 +¢83<r+e, ie., |z — vl <7+ ewhich is a contradiction.
Thus lim,_.. |2 — y,,|| = r for some subsequence {y,} of {y,}. Hence
r=lim |z — 9,/ = lim | Tz — Ty, = lim | T2z —y,,. But Tz—y, —
Tz — y, and so [Tz — yll < r or Tz € H(y,, 7). |
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It remains only to show that if z¢ H'(y,, ) (that is |z|, =7 =
inf{lw|,;: we H(y,, 1)}) then |Tz|, = z too. The word “only” here is
misleading since this is the most complicated part of the proof. We
shall produce w:e K for ¢ > 0, so that lim., [|w® — 2|| = 0, and d;e K
so that lim,, ||Tw* — di|| = 0, and lim.|d;], = 7. It follows that
Tz = lim,_, d; satisfies |Tz|, <z (apply the function f) and hence
|Tz|, =7 or Tze H'(y,, ). Fix 0 < e < (1/100)min(r, 7*) and 0 < é <
€*/100.

We would like it if v, ¥, — Yo, ¥ — ¥, - -+ Were disjointly sup-
ported in ¢, (as in the special case). Of course this is not neces-
sarily true. But we may assume they are essentially disjoint. More
precisely we have the following lemma.

LEMMA 6. There exist integers 1 =p, < p, < p, < -+ and 1 =

6 <q,<q<--- and a subsequence {y,} of {y.} so that for all
n=1,
)

(1) If xeB,=conv{ZTi}icr,, p,,pn then 2|, .0, 0l < o
(2) 1linoll < 2

, 0
(3) H(yn - yo)[~[qnsqn+1)H < E’,,; ’

’ 0
(4) H'yn_yon—"rl<§by
, ' )

Proof. We indicate briefly how to do this. By passing to a
subsequence of {y,} we may clearly assume (4) and (5) hold. Set
¢, = », = 1. Choose ¢, large enough so that (2) holds for n = 1.
Choose y;€{y,} so that for all jelq, q), (¥ — ¥.)(5)| < 6/2. This

may be done since (y, — yo)g 0. Then let p, be large enough so
that for 7 = »,, |2,(5)| < 6/2* for all je]lq, q). Let g, be so large
that (i) if 7€[p, »,) then |xz,j)| < /2 for j > ¢,; (i1) (2) holds for
n = 2 and (iii) if j = ¢, then |(y; — ¥,)(§)| < 6/2. We have construct-
ed q,, q., ¢; D, v, and y; so that (1) holds for n =1, (2) is satisfied
for n =1, 2 and (3) is true for » = 1. Moreover we have one half
of (1) for n =2 (i.e.,, © = p, implies |z,(5)] < 6/2® for jelq, q.).
Clearly this process can be continued inductively—we omit the
simple details. |
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To simplify notation, we shall assume henceforth that {y,}, not
{y.}, satisfies the conclusion of Lemma 6. Note that Lemma 6 has
actually blocked the x,’s into sets B, so that vectors in different
B,,’s are essentially disjointly supported in ¢,. This blocking trick
and the ideas for the more refined versions below come from recent
work in L, theory. (See e.g., [6] and [7].)

Let 0 =m, < m, < m, < --- be integers so that

(6) (M, — M,y — 2)~* < 5/2° and 2-™ < r.

We shall use the following

Observation. Set I, = [p., P.+), and let v = 32, B, € K with
2.B8:=1,3,=0. Then for each n =1 there exists an integer
Uy My <, <m, 80 that 3., [3,<8/2" and thus if d,= i3] B,
for n =1 and d, = >,/ B, then |[v — 32, d,| < 9.
To see this fix #» and note

My —1

12382 5 SA=m —m, —2)

J=m,_1+1 iel;
min{ >, B m,, +1 = 5= m, —1}.
ielj
Thus 1 = (m, — m,—, — Z)Zie% B:; for some j, m,_, < j, < m,. Let
u, = jo. Then by (6) Xier,, B: < 0/2". The last statement of the
observation follows easily. |

Our next goal is to define w*. This will require some prelimin-
ary work. For each k=1 let z,€ H' (Y., — ¥, v — ¢), and let g*e
B(4)* be such that z, = 3.2, B*(¢)x; with ||B*|l, = |2.],. Fix k. By
the observation we can find m,—, < u, < m, and m,+, < v, < My, SO
that
(7) >y B3i) < 6/2% and IZ B¥(1) < 8/2* .

k velyp

TE€Ly,

Set 2z, =23u%" B‘(Wz. It is easily checked that |z}, =
D B(0).
V€7e claim that

(8) | W, — Yo) — 2l S 7 — & + 25 .
Indeed, let L, = [q., ¢.,,)- Then

1Wmy = ¥ = 2Dyl = W, = Vlarl| + lloel ozl = 5o + 5

(Here we have used (3) and (1).)
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Also, since 2, € H'(Ym, — Yo, * — &), || Ym, — Yo — 2:]| = — ¢ and
thus

1 Wm, — Yo — 2o ll = Wy — Yo — 20| + 1@ — 2D/l S 7 — ¢
+1 3 B"(i)wihkll + |l _Z BE@)x| + ll,Z Bzl =7 —¢

1e~[Py s Pyp+1)
+MZ a/2™ + Z o/2" + §/2" 1t < r — e+ 25 .
n=vj+1
(We have used (1) and (7)) (8) follows.
We shall also need

(9) 2= |zmh=er+o.
To see this, note first that

120l = 122l = [Ymp — Yoll = 1Y, — ¥ — 22| =7 — 6 — (r — & + 20)
=¢e— 30 >¢f2

by the choice of §, (8) and (4). To prove the right hand inequality
in (9) we need only show |z,| =< ¢/r + d. But |[(¢/r + 0)Yn, — Yo) —
Yy — Y = A —&/r — )| Y, — Wll = X — /7 — 0)(r + 0/2™) = r —
e+ 0(1/2™ — r) < r — e by (4) and (6).

This implies (¢/r + ) (Ym, — Yo) € HYm, — Yo, ¥ — €) and so |z,], =
inf{lwl,: we HYp, — Yo © — O} = |(e/7 + 0)Yumy, — yo>]1 < ¢/r + 0, which
proves (9).

Now let z be an element of H'(y, ). We will have to distin-
guish between two cases: If ||y,|| < » then 0¢ H(y,, ) and clearly 0
is the only element in H'(y, 7). In this case we will have to show
0 is a fixed point for 7. The second case ||y,|| = r turns out to be
slightly more involved. We shall give the detailed proof for the
case where |ly,|| = », and leave the case [/ y,|| <7 to the reader.

So let us assume | y,|| = 7. Note that |y, — z|| = », for if
iz — %ol < r then ||tz — .|| = » for some 0 < ¢ < 1, thus tz € H(y,, 7)
and |tz|, = t|z|, = tv < v = inf{lw|,: w e H(y,, )} which is impossible.
Define

2o =12+ (/MW — 2) = (e/r)y, + 1 — &/7)z .

Observe that z;e K since it is a convex combination of y, and
#; moreover z; € H(y,, » — ¢) since |y, — zil| = 1 — &/M)|y, — 2| = 1 —
glr)y-r=1r—e.

Also

(10) lzh = (1 —e/m)zh + e/rly = A — /r)T + ¢/ .

Let k, be large enough so that
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11) 1o = 2D)tamy oyl <0 and 2l ol <6,
and let m be the greatest integer so that
ko+m
(12) B+ 3 lEh=1-79<1.
=0
By (9) we see that
(13) 0==7n=Z¢r+06 and A+ m)<2/.
Define
ko+m
wE = 2y + Z EA (See Figure 2.)

_ko

By (12) w*e K. The remainder of the proof involves some es-
timates which, we have a strong feeling, will not thrill the reader.
We apologize for this. To start we wish to estimate ||w® — y,/|. We
have seen above that ||z, — /| = r — ¢, and [[24]-,, /| = 6/2™* if J, =
(9 Ty +2) (by (1)). The intervals {J,};2%" are disjoint and by (11),
if J = UkrJ, then [[(z0 — vo)l,|| < o6. Furthermore |[zi| = |24, =
glr+ 0 and s0 ||t 2nlsll = efr 4+ 0 4+ Do 02k < gfr + 20. Put-
ting all this together we have

ko+m kotm ]
I i — Yo+ 2 2| = maxwzs — Y+ 2 z:k>| .
k=kg | k=k, ~J
kom
H(zo — Yo+ zik> } .
k=kg J

The first term on the right side is bounded by » — ¢ + >
0/2m+ < r — ¢ + 0 and the second is bounded by &/+ + 26 + 6. Thus

(14) lw*—y | =r—e+4d.

The above estimates also yield that

ko+m’
(15) Sy z4,,i’ = max{e/r + 20, 6} = ¢/r + 20 .
k=kg
Thus
ko+m ko+m
Jw: — 2| = 4 2+ _Zk‘ Zap — z(l = Hs/'r(y0 —2) + k;}:‘ z‘;’ﬁ
<ec+te/r+26,
and so
(16) lim ||lws — 2| =0,

which looks promising. One further estimate we shall require is
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an [w* = Y, ll <r—c+ 65 for k< k=k +m.

To prove this set A = [1, S ) and B= ~A. |[(w — ¥l =
lw — yoll + |W — Yulall =7 —¢ 10+ 0/2m <r—c+20 by (14)
and (3). [(w* — ¥ sl = 1w — Wy, — Ysll + 19015l

Now |lylsll <& by (2) and |[(w* — Wm, — Y)lsll = max{|j(w® —
Ymg, — Ylsglly W — Wy, — Y510/l Where as above Jy = [gn,_,,
Ungors) W = Wy — YDl S N =210, + @ — Yy — YD), |l
3 +r—ec+20=r—¢c+50 (by the definition of w°, (11), 1) and
(8)). Also [[(w* — Ymy, — yo))lB/J4k|' Hz0|B/J4k|| + || 325 ot zilsll + ||(?/m4k -
Yoyl < & + efr + 20 + §/2™+ < ¢/r + 49. Compiling all this we
get (17).

By (17) and (5) we have

(18) HTwE - ymm“ é HTwE - Tym4kl| + HTym,k - ymm”
SN~ Yngll + 1 TYmy, — Y| S 7 — €+ 70 .

Let B = {8}z, € B(4)* be such that Tw*® = >, B, and |Tw®|, =

=1 By
By our earlier observation (using (6)) there exist integers 4,
My < 4 < My, Tor ky < k < k, + m so that 3726217 B, < §/2%* and
choose Gigtm1 > Magerm+2 SUuch that 355 hyimi B = 8/24"‘0“"“’ Define

= 3% B, df = S04k B, for ky < k< k, + m and Tt =d;+

i=pl4y
Z’i"*k’: i
It follows that
(19) 1 Tw — Tw| < 6.
Now by. (1)
(19,) Hdlec|~[q/k,<14k+1)n < 5/2%_H and Hd3|~[1,qzko)u < 0.

Thus di and the di’s k, < k < k, + m are “essentially disjointly sup-
ported” each one having essential support in [g¢.,9..,). Also by
(11) z; is essentially supported in [1, gy, ) E1L, e, and for %k, <
k < k, + m, z; is essentially supported in [q¢,, ¢.,)< [4.,, 9-..)- (See
Figure 2.)

By (19) and (18) we get
(20) WYm, — Tw|| <r—e+ 8.

We claim
(1) i — W, — W) <7 —e+100; BK=k=k +m.

As usual we shall need several intermediate estimates. Let
A, =1a,,49.,,). Then |(di— Two)l, || =< 36/2 by the definition of
Tw* and (19'). Also ||y,lsll < 8/2 by (2), and thus by (20), ||(d; —



( \ ( ,,(koﬂw %Gk gtD)

-

e}

3

5

P I u Y4 (k, +1) Vi (g1 . U 2y 5

lko 4k, l 4 (kg +1) | z.(k0+2)| 0 3

1 . \ =

Z

T r

“‘lk -2 "‘IL -1 "‘z.Ik “’ax[ +1 ”ak,n m ] m ! n ! m [ ‘“z.({k 143 T4 (k_+2) :

4o 0 0 0 kgt Talkgtl) Ta(kgrAL Ta(kgr)+2 o 0 5
g, +l

k ¥/ +1 S

° Tt e 1™ ) kgt z

Y 0 0 =

=

o

€ [ € Z

%, gt g2 a

FIGURE 2. Let us illustrate by examples how to use Figure 2: zix, is pictured supported on [wus,+1.vs,). Thus, zix, is a convex com-
bination of 0 and {x:: ze[pm +1, p.,%)}, and by (1) it is essentially supported on the interval (qu%, q.,‘,,o) in e, d{,a is pictured supported on
[4io+1, £ige1); thus dko is a convex combination of 0 and {x,: ie[mkom pakuu)) and is essentially supported in ¢, on [q,w q;koﬂ)‘

8LT
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Umy, — YDlall = (1@ — Tw)lull + [(Tw* — Ynlall + [190la,ll = 30/2 +
r—e+8 +0/2=1r—¢e+105. Also

1(@i = Wy, — YDapll = 1dilos]l + | WUmy, — Y)lsll = 0
by (3), and (19"). This proves (21).
Next we wish to show that
(22) ldil, = 2], — 300/r .
To see this define

A= {neN:|din) — Yn, — ¥)n)| >1r/2} and B = N/A.

If ne A and in addition [di(n)| > |(Y.,, — ¥)(n)|/2 then |di(n)| > 7/6.
But then |di|, = ||d;|| = |di(n)| > /6 > |21/, by (9) and so (22) holds.

Thus we may assume that for ne A

(23) |du(n)] = Yy, — Y)(M)I/2 .

We wish to show that under these circumstances d; + (300/7)(Ym,, —
Yo) € HWY,,, — Yo,  — €). (22 )then follows since z,, € H'(Y,,, — Yo, 7 — €)
and [z ], = |2yl

Suppose ne A and (Y., — ¥,)(n) is positive. By (23) and the de-
finition of A

(24) Ym,, — Yo)(n) = 7/3
and so

Yy, — Y)(0) — [di(n) + (B06/7)(Ym,, — Y)(W)]|
= Ymg, — Yo (1) — di(n) — (300/7)(Ynmy, — Yo)(n)
<r—e+ 100 — (B05/r)(r/38) =r — €.
Here the expression in the absolute value sign is positive by (23)
and the definition of A, and we applied (24) and (21) to obtain the

inequality. A similar argument works if (¥,, — ¥,)(n) < 0.
On the other hand, if » € B then

(Ymy, — Yo (0) — [di(n) + (B06/7)(Ymy, — Y)W = /2 + 300/r <7 — €.

This proves (22).
Let up summarize the current situation. Given ze¢ H'(y,, ) we
have constructed vectors w*e K so that (16) lim, ., |w® — z|| = 0, and

vectors d;, di, k, = k < k, + m such that Tw*® = dj + Do dj, satisfies
[|Tws — Twe|| < d < €/100 (by (19)).
By the definition of Tw* and (22) we have

o~ ko+m ko+m
12 |Twl, = |dil+ 3 1dils Z [dil + 3 [2hl — (303/r)(m + 1) .
=k =ko
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Thus by (10), (12), (13) and the fact that § < /100

ko+m

il S 1~ 3 |2l + B00/r)(m + 1) < |2, + 7 + (303/r)(2fe)
<zl +elr + 6 + 60e/100r = (1 — g/r)T + 2¢/r + €/100
+ 60e/1007 .

In particular

limsup |[di, = 7 = |2], .
£—0

We want to show that die H(y,, ) and so |di|, = =, from which it
follows that lim,,|di|, = .

To this end set I = [1, q,,). llds — woll = max{li(ds — v, I(ds —
). Now [[(ds — yoluill = lldsl~sl] + lwalos]l < 25 by (1) and (2) and
the definition of d;. Also

s — wlell = s — Tl + (T — vl
AN Uy, =Y S0+ 7r—e+8 +o=r—ec+ 100 <7r.

(Use (1), (8) and (20)). It follows that ||d; — .|| < 7, i.e., dje H(y,, 7)
and thus for all ¢,

(25) |di|, =7 and lim|di|,=r7.

It remains only to show that

(26) lim || Tw* — ds| = 0 .

By the definition of _’l/’\u-z/s, (26) will follow if we show lim, ||d;|| =0
for all k, £ k< k, + m, sinece the di’s are essentially disjointly sup-
ported in ¢,. Using the fact that |di|, = 7, (22), (10), (12) (13) and
0 < €4/100 we get

~ ko+m kog+m ko+m
Lz (Tl = |dih+ 3 1dih 27+ 3 b =7+ 5 ladl — 3efor
ko+m
=1 —¢/m (2] —e/r) + Z |2 ls — 3e/or=—e/r(l — ¢/r)™
ko+m

—3ef5r + (L= 71 — )|zl + |2l + 35 17l
—1-7—a@E=1- 86

where lim,_, a(¢) = lim_,, 3(e) = 0. It follows that (since lim, ., |d;|=
lim | 25|, =7)lim,_, Uk | di |, — 2k |24 1) =0. By (9), |2, =¢/r+0 and
by (22), |d;|, = |24 ], — 306/r > |z4k[1 (30/1007r)*>. A simple calculation
now shows lim, ,|d;|,=0. Indeed 0= "™ |di], — (|20l,— 8/10r~e) =
small + (m + 1)3e?/(107) < small + (2/¢)(8¢*/107) = small + (3/567)¢ = small.



176 E. ODELL AND Y. STERNFELD

Thus each term is small and so |d;|, is small. Since |di|, = ||ds|l,
lim, ., |d;|| = 0 too, and (26) follows.

This completes the proof of the theorem in the case ||y,]| = r.
If ||y3ﬂ/< r i.e., H'(y, r) = {0}, we define 2z, =0, and construct wr,

and Tw® as before. All the relevant estimates will continue to hold
in this case, many of them trivially so. We omit the details.

III. Some extensions of the main result. Clearly not all con-
vex weakly compact subsets of ¢, can be represented as the closed
convex hull of a weakly convergent sequence. Moreover some con-
vex weakly compact subsets of ¢, are not even contained in the
closed convex hull of any weakly convergent sequence. (Such a set,
for example is K, = {xcc: 2 =0 >, (x(®)* < 1}.)

However, the proof presented above can be generalized to in-
clude a larger class of sets. For example the proof of the special
case can be extended to cover the set {x = (x(4)):«(7) =0 and

2, 2(1)? £ 1} wherel < p < . More generally we have the fol-
lowing theorem. The set K(p, w) below is the image in ¢, under
the formal identity map of the positive cone of a Lorentz sequence
space.

THEOREM 2. Let 1 < p < =, and let w= (w, w, --+) be a de-
creasing sequence of nommegatives with >.o, w, = . Then the set
Kp, w)={xecc:x =0, D, &>0)w, < 1} (where % is the decreasing
rearrangement of x) has the fixed point property for nonexpansive
mappings.

Note that for w=@1,1, --:) K, ., =K,={xe€c:x=0]x|, =1}
where ||+, is the 4, norm.

Certainly there are other sets k & ¢, with the fixed point pro-
perty to which the above arguments apply. We did not, however,
formally axiomatize the properties required of K to make our proof
work. We suspect that every weakly compact convex K in ¢, has
the fixed point property.
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