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Suppose that numbers 2,3, --- are partitioned into two
disjoint classes R, S so that rational powers lie in the same
class. In this paper we prove that the set of numbers &
which are normal to every base from R and to no base
from S has Hausdorff dimension 1. The existence of such
numbers was first shown by W. M. Schmidt.

1. Introduction. We call two natural numbers », s equivalent
and write » ~ s, when each is a rational power of the other.
Schmidt [2] has shown that normality to base » implies normality
to base s precisely when s is a rational power of » and also [3] that,
given any partition of the numbers 2, 8, - -+ into two disjoint classes
R, S so that equivalent numbers fall in the same class, there are
real numbers normal to every base from R and to no base from S.
In this paper we prove the following.

THEOREM 1. Given any partition of the numbers 2,3, --- into
two disjoint classes R, S so that equivalent numbers fall in the
same class, the set, ¥, of numbers which are normal to every base
from R and to mo base from S has Hausdorfl dimension 1.

If R is empty then .4~ consists of those numbers which are not
normal to any integer base. In this case Theorem 1 is already
known, see for example Schmidt [4]. If Sis empty then _s consists
of those numbers which are normal to all integers bases. This set
contains almost all numbers, in the sense of Lebesgue’s measure,
and Theorem 1 is obvious. We will therefore restrict our attention to
the case when R = {r,, 7, ---} and S = {s,, 8,, - - -} are both nonempty.

After some preliminaries, and given a certain parameter A, a
nested sequence

Jo=[0, 1150,

of sets is constructed, where each set J, is a union of closed inter-
vals. It is then shown that a number

teNJ;
=1
is nonnormal to each base s, s, ---. Then a new sequence of sets

K,=[0,1>K>---
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is constructed, where each K, = .J,, and it is shown that a number
teN K,

is normal to each base 7, 7, ---. For this, estimates of exponential
sums and two lemmas of Schmidt [3] are required. Finally, a
theorem of Eggleston [1] is used to show that N2, K; has Hausdorff
dimension at least log (4 — 1)/log A. Since A can be chosen
arbitrarily large, the desired conclusion follows.

We will require the following lemma, due to Schmidt [3], which
is the cornerstone of his proof that _4~ is nonempty.

LEMMA 1. Let K, I, v, s be natural numbers with | = s* and
r~+s. Then

N-—1

(1) S, f[ |cos (wrl/s®)| < 2N where a(r,s) > 0.

n=0 k=K+1
The following result implies Theorem 1.

THEOREM 2. Let A > 2 be a natural number. Let R, S be two
subsets of {A, A+ 1, ---} such that if reR and s€S them r + s.
Then the set .4, of numbers which are normal to every base from

R and to mo base from S has Hausdorff dimension at least
log (A — 1)/log A.

2. Deduction of Theorem 1 from Theorem 2. Suppose that
we are given a partition of the natural numbers R, S as in Theorem
1. Let R, =RnN{A,A+1,---}, S,=8SN{4,4+1,..--L

We apply Theorem 2 for R,, S,. Then .45 = _47 For suppose
reR and xe. .4, Then clearly if » = A then x is normal to base
r, if r < A, then 4 > A and also r*¢ R since rational powers lie
in the same class. Hence z is normal to base 4. But then z is
also normal to base . Similarly x is nonnormal to base s for any
seS.

Hence .+, .4 and clearly 4+ < ._+7. Thus

ALDi,;; LA/‘; '-A/' .
But
) © log(A—1)
> o M- — PP
dim <AU=3 JQ) = " A =34, .

Thus dim " = 1 which proves Theorem 1.
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We now construct a subset of _#7 to show that

log (A —1) )

dim 45 =
A= log A

Suppose R = {r, 7, ---} and S ={s, s, ---} are given as in
Theorem 2. It is sufficient to construct a set of numbers & such
that & is normal to each of the bases 7, 7, --- but not normal to
the bases s, s, - - -

3. Preliminaries. Let

Bij = alrys;)  (4,5=1,2,--+)

where a(r, s) is the constant in Lemma 1.
Put

Bk: min Bi,]‘

14,k
and
7y = Max ("'17 0y Ty 81y 00 'sk) .

We may assume g3, < 1/2. Put ¢(1) =1 and let ¢(k) be the
largest natural number ¢ which satisfies

=9k —1+1, Bs=pLEk™, v=7k.

Then ¢(1), ¢(2), - -+ is a nondecreasing sequence of natural numbers;
in iwhich every natural number occurs. We let 7} = 744, i = 850,
then {r{} and {s]} have the same properties as {r;} and {s;} but further

B, = Rk and v, =<vik.
Therefore we may assume that the original sequence satisfies
(2) Br = Bk, e = Yik .
We write i(m) for the least number h, such that
m %= 0(mod 2*) .

Put s(m) = spm. Then every term s, occurs infinitely many
times in the sequence s(m).
Let 4, d,, --- denote absolute constants.

4, Construction of a set of nonnormal numbers. We construct
sets

(8) Jo=1[0,1]DJ,DJ,D -
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(each the union of closed. intervals) as follows:
Let

fim) = ™ + 2s,m° .
Put
my =Tfim)l, {m;xy =I[{m)yflogal,

where [x7 denotes the least integer greater than or equal to z,

(4) b, = (m + 1; s(m))
b, log s(m) ]

5 = | Lm0
(5) Gt log s(m + 1) + 2
Then

6 _m+ 1L 5 < Sm A D o 3
(6) 105;;.3(711,4—1)+ _a+“logs(m—|—1)+og ogm +
and
(7) e™s(m)® = s(m)'m < e™s(m)'o8losm+s |

‘The numbers a, and b,, defined in (4) and (5), are chosen so
that

s(1)% < 58(2)%2 < 5(2)%2 < s(3)3 < s()r < - - -

- Let J, be the union of the intervals I, each of length s(1)-*,
whose left end points are of the form

8 =8 & &
(8) BT Tt T sn
where ¢, range over 0,1, ---, s(1) —2 if s(1) is odd, and over
0,1, ---,s(1) — 3 if s(1) is even.
Put

oty =2 if s(i) 1is odd
=3 if s(i) is even.

There are (s(1) — 6(1))* such intervals I of J..

Suppose that J, has been constructed and that I, is an interval
of J, of length s(k)°*.

By (5)

s(k + 1)—went2 < (k)% |

Thus in each interval I, there are at least
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[%ﬁi] — 2 intervals I, of length
s(k + 1)~*¢+: whose left end points are finite “decimals” of length a4,
in base s(k + 1).

To eonstruct J,,, we proceed as follows:

Let p, be the left end point of an interval I;. We construct
subintervals of I; of length s(k + 1)~%+: whose left end points are
of the form

& i1

9 o LR ————
(9) §er = O + s + 1) + s(k + 1)%+

where ¢, = b,—a,; and ¢, ---, &,,, can rangeover 0,1, ---, s(k+1)—
ok + 1).

In each interval I; there are (s(k + 1) — 6(k + 1) + 1)+ such
intervals. Let J,., be the union of all such intervals taken over
all I;. Then J,,, is the union of at least

([%] - 2>(S(k +1) — 6k + 1) + 1)ten

intervals of length s(k + 1)-%+1., "This completes the construction of
the sequence of sets J,DJ, D ---.

LEMMA 2. If e J; then £ is mommormal to each base
Siy Sgy 0 °

Proof. Fix h and let s =s,. Let ¢ be so large that

S — 1 ? —h
(10) ( : ) <2
For a number M with h(M) = h there are at least
(11) >, tn—1—9)
By =h

g-blocks ¢&;44, -, €+, consisting of the digits 0,1, :--,s — 2 in the
expansion of ¢, such that 7 + ¢ £b,. Now h(m) = h precisely if
m = 2" (mod 2*). If h(m) = h and m > 2", then, by (6),

tn —1—q227" j:mﬁgm (G + L s) — (3 8)) — loglog m — 5 — q]
since t, = b, — a, and {m + 1;8) — {(m; s is a nondecreasing func-

tion of m.
Thus (11) is at least
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3, 2t 3 (L) — ((G59) — loglogm —5 — g)
= 2"KM + 1;8) — <{1;8)) — M(loglog M + 5 + q)
= 2-%b,(1 + O(1)) .

If ¢ were normal to the base s =s,, the number of g-blocks
with digits 0,1, ---, s — 2 and indices smaller than b, would be
asymptotic to ((s — 1)/s)®,. By (10) this is clearly not the case and
Lemma 2 is proved.

5. Construction of a set of normal numbers. We also have
to ensure that the numbers we have constructed are also all normal
to every base from R. To do this we will modify our construction
by discarding certain of intervals of J, at each stage, to obtain a
new sequence, K, D K,D ---, with K, J,.

Consider the intervals I,_,. In each such interval there are
(s(m) — o(m) + 1)!= intervals of J, whose left end points we denote
by &n.

Let

A= 33| S aritw||

t=—-m1, 1] j={mird+1

where e(x) denotes e™*°.

LEMMA 3. If m = 0, there are at least (s(m) — 3)'=» numbers
Enc I, _, for which

Am(fm) = 52m2(<m -+ 1> — <m>)2—ﬁm/2 .

Here 0, and 6, are absolute constants.

Proof. Now
m {mt1ir) ) 2
S A = 3 Z 2 e(ritga)
Emel;n_l t=t; i=1 emelm F=(m,r;)+1
and the inner sum,
(m+17;)  (m1irg)d .
2, =2 2 > e((ri — rDtgn)
Em€lpm—1 & F=mir )4+l g=(mird+1
=23 2.2 e((ri — rDtéy) .
J Em

Thus
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o tri— 1D\ o ... 4 o Lri=rD(s(m)—(m))
=53 I 1+ x Yoo oo )] .
Thus
(12) Jp AP HERIES 555 8 I L EIRIE P

We write B,(x) for that part of A,(x) for which either

|7 —gl<m or g is at least <m + 1;r,) — m and we write C,(x) for
the remaining part.
Then

(13) A,(x) = B,(®) + Cn(x) .

We have the following trivial estimate.

B,@) < 10m* 3., ((m + L;7) — <m; 7))

= om’({m + 1) — <(mp)
= om*({m + 1) — <mp)y=fm .

Thus
62 B,(&n) = 0m*({m + 1) — {m))*~*m(s(m) — o(m) + 1)'= .

Here the §, are absolute constants.
We now estimate X3; C.(¢,.)-

That part of the sum (12) corresponding to C,(¢,) is at most

{m41ird {m413r)—m s(m)—a(m

) .
23> > 2 I 2 (eltritri— — Ls(m)~)| ,
t i g={mird+l j=g+m k 1=0
since |X,.e@)| = D, e(—x)|. By making a change of variable we
obtain
m m %m Em—9 bn
1 ISCeIs2 S R3S I Dm0 5k,
™ ?;Om i=1 g=m j=1 =apm+1
where
Qp = {m + 1;7) — {m;r) —m
and

s(m)—d(m

1Dl = |5 et — 1yrsmrorits(m)~)

1=0
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< 2(s(m) — 0(m) + 1|1 + e(t(r — Dyriroris(m) )|

= (s(m) — 6(m) + 1)|cos (wLis(m))~*|

where L, = (r? — L)r{™ot,
Fix L=L;, t, r =17, s =s(m), 6 = d(s) and g. Then the inner
sum in (14) is
{m+1,ry—{m,ry—m—g  dm

(15) = > 11 ) |eos (mLris=*)| .

J=1 k=um+
Now
Lyig=tm < (AL —(mir)—m—g gy 4o 1D 000 o — by,
— ,,.<m+1:r>,r—mms—<m+1;s>
< 1.<m+1>/logr,rl-mms_<m+1>/logs

=mr-" <1/2 (provided m > 1, = 4).
Thus

ﬁ |eos (wLris™*)| = kI:I |eos (z/2¥t)| = 6, >0 .

k=bj 11

The sum (15) is at most equal to

{m+137)—{miry—m—g . )
Os > II |cos (mLri/s¥)| .
J=1 k=a,+1
Now
|L| = (r™ — 1)r™» = (7™ — 1)et™
> (r™ — 1)s(m)»s(m)~"5 ¢ ™= by (6)
g s(m)am+1
provided

v'.'m., g S(m)log log m+-4 + 1 ,

which holds for m sufficiently large, by (2). Hence from m = §, we
may apply Lemma 1 and see that (15) is at most

256(<m + 1; ’l’> — <m’ 7->)l—a('r,s) .
Thus we have

| 3 Cale)| = 0m*({m + 1) — Xmy)=t™(s — & + 1)'= .

§melpm—1

Combining this with the estimate for |3 B,.(¢.)| we have
] ZI. A& S dm({m + Iy —<my)—rm(s — &+ 1) .

m €Ly —1
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Hence the number of ¢, € I,_, for which
An(En) > 0m((m + 1) — (m)t—in/
is at most
(G + 1y — (my)+(s — 8 + Tys.
But

—1/4 — __.___e

and so

(<m + 1> — <m>)—ﬁm/z < (@)51"‘_1/‘/2

= [@V'm + Ty Vem]or2
<1/2 for m >o,.

e'™

Hence there are at least 3(s — 6 + 1)» numbers ¢,¢€I,_, for
which

Am(&m) = 62m2(<m + 1> - <m>)2_‘9’”’/2 .

For m = 6, (s — 3)'» < (s — 6 + 1)'» and the proof of Lemma 3
is complete.

We construct a sequence of sets K, DK,D --- in the same way
as J,DOJ,D--- was constructed. But at each stage in our construc-
tion of {K,} we use only the (s(m) — 3)'» points &, satisfying Lemma
3.

LeMMA 4. If €Ny K, then
A(E) < dm((m + 1) — (m))—tw2

Proof. Clearly

Am(é) = Am(é) - Am(Em) + Am(ém) and
Am(é) - Am(ém) = CM(E) - Cm(Em) + Bm(E) - Bm(ém) .

We estimate B, (¢) — B,(&,.) as we did for B,(x) above.

Put L, = (r* — 1yp<mttin-m—og(z — £ ). Then |L,| < 1/2 for m = 6.
The part of the expression for |C,() — C.(&.)| for which ¢ and
7 = 7, remain fixed is at most equal to

42 =g

23, 3 le(Ly~i) — 1

=1

3

<@
Il
-



202 A. D. POLLINGTON

<2 <m+1;r>y—-_<lm:r>—m 2 -
< 2(Km +~1; ) - (m; 1)) .
Thus
[Cu(8) — Culéw)| = dym*({m + 1) — (m))
= 0 m*({m + 1) — {my)=P»= .

Thus
|A(8) — A, < 0um*({m + 1) — (m))*Fn
and so, combining this with Lemma 3,
A(&) < 6mA({m + 1) — {m))r—tnn
We now apply the following lemma, Hilfsatz 8, of Schmidt [3]

to show that £ is normal to every base from R.

LEMMA 5. If A,(¢) < oom*({m + 1) — {m))*#»* for m = 0, fthen
& 18 mormal to each base 7y, 7, - -.

Thus if K = N5 K., then K is a set of numbers {normal to
every base from R and to no base from S. It remains to estimate
the Hausdorff dimension of K.

6. Estimation of the Hausdorff dimension of K. K, is a
linear set consisting of

N. = [T o) — g 2B |~ 2)

intervals of length s(m)*» = §,,.
Hence

N, > ,,ﬁ (s(k) — )%k .

Now

(S — 3),,, — s(log(s-:&)/logs)-n 2 s(log(A—a)/logA)-n , (if s g A) ,

— en(]og (A4—8)/log A)-log s

Thus

N> exp[LEU D 5 6, — a)log st |
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> exp [%_3_) S5 I + 1y — Cky — (log s(k)(log log & + 3)]
log (A — 3)
> exp [—E—A—- {m + 11 + 0(1))] .

We also have

Bg: = S(WS(:"L—_);;M = s(m)e™H—<™ < exp (O’:’/;”_zb + log s(m)>
and
05, = s(m)~n* = exp (—t{m + 1)) .
Thus
3 e, 30
{(m +1) __log (A —3)
< Slexp [_1/_%" + log s(m) — PELEZDm -+ 1)(1+0) +(m+ 1>]
= S exp [{m + 1>(t _ %;1—_31)(1 + 0(1))] .

This sum will certainly converge for all ¢ < log (A — 3)/log A.
We apply the following theorem of Eggleston, [1], to estimate
the Hausdorff dimension of K.

THEOREM. Suppose K, (k=1,2, --:) is a linear set consisting
of N, closed intervals each of length o,. Let each interval of K,
contain m,, > 0 disjoint intervals of K.

Suppose that 0 < s, = 1 and that for all s < s, the sum

3 2 (N (0,)

converges. Then K = i, K, has dimension greater than or equal
to s,.

Clearly all the conditions necessary to apply Eggleston’s theorem
are satisfied where we may take s, = log (A — 3)/log A. This proves
Theorem 2.

The author would like to thank the referee for his careful
reading of the original manusecript and for his many helpful sugges-
tions for improving the presentation of this paper.
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