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A GENERALIZATION OF A CLASSICAL NECESSARY
CONDITION FOR CONVERGENCE OF

CONTINUED FRACTIONS1

ROBERT HELLER AND F. A. ROACH

One of the most frequently cited necessary conditions
for convergence of continued fractions is the divergence of
a particular series. In this paper, we show that convergence
of a continued fraction implies divergence of each member
of an infinite collection of series.

We will be concerned with continued fractions which are of, or
can be put into (cf. Wall [4], pp. 19-26), the form

If we let

A o = b0 , A , = b , A 0 + 1 , B o = 1 , B 1 = b l y

( 2 ) Ap = bpAp_x + Ap_2 , and

Bp - bpBp_x + Bp_2 , p = 2, 3, 4, ,

then the wth approximant of (1) is given by AJBn. As is customary,
we say that (1) converges provided that not infinitely many of the
denominators Bp are zero and {AJBP} converges to a finite limit.

The principal result given in this paper is the following theorem.

THEOREM. Suppose that u is a complex number, v is a complex
number such that — 4 < uv <£ 0, and u = 0 if v = 0. If both
Σ I&2P-1 ~ u\ and Σ \b2p — i>l converge, then (1) diverges.

Considering the case where u = v, we immediately have the fol-
lowing result.

COROLLARY. In order for (1) to converge, it is necessary that

for each real number k between —2 and 2, Σ \bp — ki\ diverge.

If k = 0, this becomes what is often referred to as von Koch's theo-
rem. According to Perron [2] p. 235, it was first proved by Stern
[3] in 1860; additional information concerning the numerators and
denominators of the approximants was obtained by von Koch [1] in
1895 (cf. Wall [4], pp. 27-29).

1 This paper is dedicated to the memory of Keith Heller.
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The proof is accomplished by establishing that the sequence {Bp}
is bounded. This, together with the identity

\(AJBJ - (An+1/Bn+1)\ = V\BnBn+1\

implies that (1) is divergent. We will establish the boundedness of
this sequence by comparing it with the sequence {Dp} of denominators
of the approximants of the periodic continued fraction

(3) 1 1 1 1
U + V + U + V + - —

which is divergent if and only if u and v satisfy the hypothesis.
The sequence {Dp} is bounded if u = 0. If uv Φ 0, then (3) is equiva-
lent to

- Γ - - - Ί
uLz +• z + z +•••-!

where z = V(\uv\)i. Let r denote [z + V{z2 + 4)]/2 and let s denote
[z — Viz" + 4)]/2. Since r + s = z and — rs = 1, from (2) we have
that f or p = 2, 3, 4, -,

£>p = (r + 8)JD,_! - rsDp_2 .

From this it follows that Dp — rZ)^.! = sp and Z)̂  — sDp_x = rp and
hence,

(r - «)!),_! = rp - sp .

Since ~4 < z2 < 0, we have that z2 + 4 is a positive number and
therefore the complex conjugate of r is [—z + l/(22 + 4)]/2. Thus,
Ir'l = \sp\ = 1 and 2/i/(z2 + 4) is a bound for \DP\.

Let α5p denote Bp — i)^, c2ί,_! denote 62ί>_! — ̂ , and c2p denote
b2p — v. We will now show that for each positive integer n,

#2.-i = Σ cA-i-A-i a n d

(4)
v y 2Λ

where Dp = (u/v)DP if p is odd and i)p = Dp if p is even.
Notice that xx = CJ)QBQ and a?2 = cλD[BQ + cJ)lBx. Suppose that

for some n, (4) holds true. From (2) we see that

aWi = (u + c2n+1)B2n + S^.i - (wA + AΛ-i)

which is ux2n + α;2ίl_1 + C2W+1JB2%. Replacing x2% and aj2%_! with the ap-
propriate sums, we have that x2n+1 is

Σ cp{uD2'n_p + A,-i-p)Sp-i + c2%AJ52P-i + c2p+1D0B2p .
p l
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This expression can be written as Σϊ ϊ ί 1 ^A+i-pSP-i In a similar
manner, we find that

So, for each n, the equations (4) hold true.
We will now show that there exists a nonnegative number K

and a positive number M such that

(5) \xn\^Kΐl(l + M\cp+1\), Λ = 2 , S , 4 , . . . .

Let M denote a number such that for each n, \ Dn | ^ M and
\Dr

n\^M. From (4),

p^\ ^ M±
By hypothesis, Σ k J is convergent and hence this sum does not
exceed

where K =

(6)

cp |. Since x0 = 0, we have that

n-1

p = l

where ΣP=IM\CP+1XP\ = 0. Suppose that j is a positive integer such
that for n = 1, 2, , i, (5) holds true. Then, combining (5) and (6),
we have

±
P = l

\ CP+1 \KPf[ (1 + M\ cq+1 |
1

The right-hand member of this inequality can be reduced to

Thus by mathematical induction, (5) is established.
Since the series ^M\cp+1\ is convergent, so is the product

Π (1 + M\cp+1\). So, the sequence {xp} is bounded. Consequently,
the sequence {Bp} is bounded and (1) is divergent.

This theorem yields a new necessary condition for convergence
of (1) which is considerably stronger than the classical condition.
The new condition is not, however, sufficient for the convergence of
(1). In fact, even the divergence of both of the series Σ \b2p-i — v>\
and Σ I blp — v \ for every u and v satisfying the conditions of the
theorem is not sufficient for convergence of (1). This can be seen



310 ROBERT HELLER AND F. A. ROACH

by considering the following example. For p = 1, 2, 3, , let

hP = 1 .

In this case, I ? ^ ! = 0, p = 1, 2, 3, , but both of the series above
are divergent regardless of the values of u and v.
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