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ON THE RELATION PQ-QP= -il

W. J. PHILLIPS

There is a variety of literature on the relationship be-
tween the two equations

(1.1) PQ-QPa-il

(1.2) exp(^P) exp(isQ) = exp(ist) exp{isQ) exp(ϊίP) , s,teR

where P and Q are self-adjoint operators on a Hubert space.
Von Neumann has characterized the solutions of (1.2) as those
pairs (P, Q) which are unitarily equivalent to a direct sum
of a number of copies of the Schrδdinger pair {p, q) where
p is —i(dldx) and q is multiplication by x on L2{R). Hence
any pair which satisfies (1.2) and is irreducible in the obvious
sense is unitarily equivalent to the Schrδdinger pair. It is
well known that any pair satisfying (1.2) satisfies (1.1) in the
following strong sense:

(1.3) there is a dense subspace Ω which is a core for both
P and Q, is invariant under P and Q and PQf- QPf =
-if for all / in Ω.

In this paper we construct an uncoutable family of irreducible,
unitarily inequivalent pairs satisfying (1.3) but not (1.2).

A reducible pair satisfying (1.3) but not (1.2) is given in [4,
page 275]. The construction is due to Nelson. It was a detaild ex-
amination of this pair which led us to our uncountable family of
pairs. In [1], Fuglede constructs a pair (PF, QF) satisfying a stronger
version of (1.3) but not (1.2), but the irreducibility of the pair is left
as an open question. The techniques in the analysis of our examples
are applicable to (PF, QF) and we show that this pair is irreducible.
For a related example due to Fuglede, see [2, Example 2],

The operators constructed in [4] and [1] are obtained from pairs
(X, Y) of self-adjoint operators satisfying

(1.4) there is a dense subspace Ω which is a core for both. Xand
Y, is invariant under X and Y and

XYf= YXf for a l l / i n Ω

but not

(1.5) the spectral projections of X and Y commute.

We also construct an uncountable family of unitarily inequivalent
pairs of operators satisfying (1.4) but not (1.5). For other such
pairs see [4, page 273, Example 1], [1] and [2] and [3, Example 3].
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2* T h e operators* Consider the Hubert space H = L\R2). The
Schrodinger 2-system {pί9 p2;qlf q2) is defined by the following strongly
continuous unitary groups.

^ , x2) = exp(itxs)f(xl9 x2) j = 1, 2

f t, x2)

%1> %2) ~ J\%lf #2 + &)

(2.1)

For a e A = {z e C: | z \ = 1} define &,: i22 -^ C by

α α?! ̂  0, x2 ^ 0

1 elsewhere.

Define the self-adjoint operators Pα, Qa by the following strongly
continuous unitary groups.

(2 2) fexp(ΐίPα) =
(exp(iίQβ) = ^a(?!, ?2) exp(iigx) exp(itp2)φa(ql9 q2) .

THEOREM 1. The family {(Pa, Qa): a e A} satisfies the following
properties:

(a) For eαcft α ίfeere is α cίe-̂ se subspace

Ωa c dom P α Π dom Qa (dom X is the domain of X)

with PaΩa c Ωa, QaΩa c i2α,

Q«Uα

 are essentially self-ad joint.

(b) For each a Φ 1, ίfee pa i r (Pa, Qa) is irreducible.
(c) For various a, the pairs (P a, Qa) are unitarily inequivalent.
(d) For eacfe a, the pair (Pa, Qβ) satisfies (1.1); ίfeaί is,

P«Qa/ - QaPaf = -if fe dom PaQa n dom Q a P a .

(e) For eacΛ a ^ 1 the pair (P a, Qa) does not satisfy (1.2).

The operators P α and Qα are related to the self-adjoint operators
Xa and Ya defined by

Jexp(iίXα) - exp(iίpθ

(exp(ΐίFα) = ^ f o , g2) exv(itp2)φa(qu q2)

and we have the following result:
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THEOREM 2. The family {(Xa, Ya): ae A} satisfies properties (a),
(b) and (c) of Theorem 1. In addition, for each fe(domXaYa) n
(dom YaXa)

(d)' XaYJ = FαXJ\

REMARKS. Since the pair (Xα, Ya) is irreducible for a Φ 1 it is
clear that their spectral projections cannot commute.

Proof of Theorem 1. Let Ωa be the set of all fe L\R2) such that
(1) fe C~(R2\{(xlf x2): x2 = 0,xx^ 0})
( 2 ) a(DlDlf)(xlt 0+) = (D}D}fXxlf 0") α* < 0, j , fc = 0, 1, 2, -
( 3 ) / i s compactly supported.

It can be shown that:

dom Pj = {/ 6 L\R2): for almost all % (& =£ ̂ ), (a?y —>f(xlf x2))

is absolutely continuous with D3f e L\R2)}

(Vjf)(Pu »2) = —i(Ddf)(xu x2) , / 6 dom p y

dom ί y = {/ 6 L2(i22): ((^, x2) > xj(xu x2)) e

, «2) = «i/G»i, ^2) , / € dom qs .

From these facts it is easily deduced that Ωa a dom Pa Π dom Qa and
for feΩa we have the following formulas for a.e. (xlf x2):

(Qaf)(%i, X2) = xJ(Xif Xi) ~ i(D2f){xl9 x2) .

This shows that PaΩa c Ωa and QaΩa a. Ωa. To prove the rest of part
(a) we introduce the dense subspaces

#, = {/€ Ωa: (DlDϊfXO, x2) = 0V x2f V j, k = 0, 1, •}

^ - {/ 6 A,: (DlD2

kf)(xlf 0*) = 0 V ̂  V i, & = 0, 1, . •} .

These subspaces are dense for they contain all C°° compactly supported
functions vanishing in a neighborhood of the axes. Furthermore
Ω'a is invariant under the group (exp(ΐ£Qα): t eQ) and Ω" is invariant
under the group (exp(itPa):teR). It follows from well-known prop-
erties of strongly continuous semigroups (see [1] Theorem VIII. 10)
that

(PJ*;')** = P« and (Qβ|*'β)** =-Qβ ,

so the same result holds when Ωa is substituted for Ω'a and Ω". This
proves part (a).

Parts (b), (c) and (e) can be proven by computing the "group
commutator"

Ca(s, t) = exp(i8Pβ)exp(iίQβ)exp(-ΐ«Pβ)exp(-iίQβ) .
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Using the definitions of Pa and Qa we have

(2.4) Ca(s, t) = expίΐβpO^ί?!, ft) exp(iίft) exp(iίp2)0α(ft, q2)
x expί-iβpj^ί?!, g2) exp(-iίft) exp(~itp2)φa(qlf q2) .

It follows from (2.1) that if φ:R2-^C is a bounded Borel function
then

J, ft)

u ft) = 0(ft, ft(2.5)

>exp(isp1) exp(iέft) = exp(ίsέ) exp(iίft) exp(ΐspi) .

Using (2.5) we can simplify (2.4)

Ca(s, t) = exp(isί)ζ5α(ft + si, q2)φa{Qi + si, ft
X ΦaiQu ft + tl)φa(qlf ft) .

Now for β, £ ̂  0 define

(α - s < x1 < 0, 0 < x2 < ί
^«(β, t){xu x2) =

(1 elsewhere.

Then for s, ί ^ 0 we have

(2.6) Cβ(8f - ί ) = exp(-iβί)^β(β, ί)(? lf ft) .
Part (c) follows immediately from (2.6) for the operators

ψa(s, t)(qlf ft) have different eigenvalues for different values of α.
Part (e) follows immediately as well.
To prove (b), let αα be the von Neumann algebra generated by

the spectral projections of Pa and Qa. We must show that the corn-
mutant of aa, is {λ/: λ e C}. From (2.6) it is clear that

(2.7) ψa(s, t)(qu ft)eαα s, t ^ 0 .

Since φa(qu ft) is the strong limit of ψa(s, t)(qu ft) as s, t —> co we have

(2.8) A d 2 ) 6 Q α .

Using (2.8) and (2.2) we obtain

px) 6 o β V

( e x p ( i ί f t ) exiρ(itp2) e a a V t e R .

If Z(J&) denotes the characteristic function of a set EaR2 then (2.7)
implies that

(2.10) Z([-ί, 0] X [0, *])(ft, ft) = —L—(ψa(8, t)(qlf ft) - /)αα .

Let α ^ 6, c ^ d, then using (2.9) and (2.10) we have
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(2.11) Z([α, b] X [c, d])(qlf q2)

= exp( — ibpi) exp( — icqj exp( — ίcp2)X([a — 6, 0] x [0, d — c\)

x (ql9 q2) exp(ίcq1) exp(icp2) ex^ίbp,) e aa .

So αα must contain the maximal abelian von Neumann algebra m =
{&{qlf q2): π eL°°(R2)}, since linear combinations of operators of the
form (2.11) are weakly dense in m. Now let Bea'a (commutant of
aa) then Bern' = m. So there is an neL°°(R2) such that B = n(qu q2).
Using (2.9) and the method employed in (2.11) we obtain

rtfo + si, q2 + tl) = n(ql9 q2) V s, t .

This mean that π is a constant almost everywhere. That is B — Xl
for some λeC. This proves part (b).

For part (d) we first show that if f,ge dom Pa Π dom Qa with
either / or g vanishing in a neighborhood of (0, 0) then

(2.12) {QJ, Pag) - (Paf, Q«g) = - i (/ , g)

To prove (2.12) we use (2.6) to write

(2.13) (exp(iΐQβ)/, exp(isPa)g)

^α(s, t)(qlt q2)f, exp(-itQa)g) .

If / vanishes in a neighborhood of (0, 0) then we can choose s and
t small enough so that (2.13) takes the form

(2.14) (exp(iίQβ)/, exp(isPa)g)
iβPβ)/, exp(-itQa)g) .

It f, g e dom Pα fl dom Qα we can differentiate both sides of (2.13) with
respect to s and t. The result is (2.12). A similar proof shows that
(2.12) holds when g vanishes in a neighborhood of (0, 0) and f,ge
dom Pa Π dom Qa. In particular (2.12) holds when fe dom PaQa Π
dom QaPa and g is C°% compactly supported and vanishes in a neigh-
borhood of the axes. In this case we can write (2.12) as

(2.15) (PaQaf - QaPaf + if,g) = 0.

Since (2.15) must hold for all such g, a dense subspace of L\R2),
part (d) is proven. •

The proof of Theorem 1 can be slightly modified to give a proof
of Theorem 2.

3. The pair (PF, QF). Let H be the Hubert space L\R) and
J ^ the Fourier transform &~\ L\R) -+ L\R). The Schrodinger
1-system {p, q} is defined by the following strongly continuous unitary
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groups

f(exp(iίg)/)(αθ = exp(itx)f(x)

l(θxp(iίp)/)(α) = /(* + t ) .

It is well known that the pair (pf q) satisfies (1.2), is irreducible and

Let ω = τ/2ττ and define

I X = eχτp(ωq) , Y = exp( — ωp)

PF = expί-iα

F = exp(—iαr

Fuglede [1] proves that both pairs, (X, Y) and (P Λ Qp)f satisfy
property (a) (of Theorem 1) arid the commutation relations

(3.3) {Xf, Yg) = (Yf, Xg) f,geάomX[λ dom Y

(3.4) (Qrff PFg) - (PFf, QFg) - - i (/ , jr) /, fl e dom P^ n dom QF .

The pair (X, Y) is shown to be irreducible but the question of irre-
ducibility of (PF, QF) is lef open.

THEOREM 3. The pair (PF, QF) is irreducible.

Proof. We use the group commutator

C(s, t) — exp(itPF) exip(isQF) ex^(—itPF) exp( — isQF) .

To simplify C(s, t) we first show

(3.5) exp(iίPF) = exp(ih(t)X) exp(ίίp)

(3.6) exp(isQ^) = exj)(ίh(s)Y) exip(isq)

where h(t) = ω~\eωt - 1).
To prove (3.5) let feL\R) then for a.e. x in R.

(exp(iίPp)/)(a?) = (exiρ(-iω-1X) exp(iί

= exp( — io)

= expi—ίω-1 exp(ωx) + ia)-1 exp(ωx + ωt))f{x + t)

= exp(ih(t) exp(ωx))f(x + t)

(itp)f)(x)

(3.6) follows by a similar calculation. Using (3.5) and (3.6) we can
simplify C(s, ί) to

C(s, t) — exp(isί) exp(ih(t)X) exp(ih(s)Y) exp( — ih(t)X) exj)( — i

Let J^f be the von Neumann algebra generated by PF and QF.
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Letting s, t-* — <*> in exp(—ist)C(s, t) we obtain

(3.7) exp( —ΐαr'X) exp(—iω~Ύ) expiiω

Since bounded Borel functions of PF are in ,

(3.8) expOέαr1 exp(-α)Pp))

= exp(—iω^X) exp{ίω'Ύ) exp(iar\X") e

Multiplying (3.7) and (3.8) we obtain

exp(—iω-Ύ)e,s^ .

So for all teR,

QF) exp(—i

Similarly exp(isp) e Jzf for all s 6 R. Since the pair (pf q) is irredu-
cible we see that (PF, QF) is irreducible. Π

We have been unable to decide whether the relations (3.3) and
(3.4) hold for the families {(Xa, Ya): a Φ 1} and {(Pβ> Qa): a Φ 1}
respectively.
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