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The purpose of this paper is to describe extensions of
the work of Errett Bishop on the location of zeroes of
complex-valued analytic functions. The main result deals
with the number of zeroes of an analytic function f near
the boundary of a closed disc well contained in the domain
of f. A particular consequence of this result is the follow-
ing theorem.

Let f be analytic and not identically zero on a con-
nected open subset U of C, K a compact set well contained
in U, and ¢>0. Then either inf{f(z)l:2€ K}>0 or there
exist finitely many points z;, ---,2, of U and an analytic
function g on U such that

f@)=(—2)---(2—2,)9(2) (2z€U),

inf {lg(2):2€¢ K}>0 and d(z;, K)<e for each k.
The paper is written entirely within the framework of
Bishop’s constructive mathematics.

As Bishop has remarked [1, p. 112], the constructive develop-
ment of the elementary theory of analytic functions of one complex
variable presents comparatively few serious difficulties. One topic
in which difficulties do arise, however, is that of location of zeroes
of an analytic function. In this paper, we derive several results
which apply and strengthen those obtained by Bishop [1, Ch. 5, §5].
and which present different constructive facets of the -classical
theorem that the zeroes of an analytic function are isolated.

For the reader who knows little about the spirit or aims of
modern constructive mathematics, we recommend Allan Calder’s
recent article in Scientific American [4]. The necessary technical
background in constructive analysis is found in [1] and [2]; in
particular, we shall assume knowledge of Chapter 5 of [1]. How-
ever, it is expedient to recall here two definitions from that chapter.

A compact subset K of an open set U in C is well contained
in U if there exists >0 such that {zcC:d(z, K)<r}cU; in which
case we write Kcc U. If K is a compact subset of C, then a
border for K is a compact subset B of K such that B(z, d(z, B)) C
K for each z in K. (We write B(z, r) for the closed disc, and
B(z, r) for the open dise, of center z and radius 7.)

We should also note that a complex-valued function f is wot
identically zero on a set A if there exists z in 4 with | f(z)| > 0;
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14 DOUGLAS S. BRIDGES

and that f is nonvanishing, or does not vanish, on A if |f(z)] >0
for each z in A.

1. Bishop’s main results on the location and isolation of zeroes
are contained in the Corollary on p. 135, and Theorem 7 on p. 138,
of [1], and are summarised as follows.

THEOREM 1. Let K be a compact subset of C, B a border for
K, and f a differentiable function on K with inf{| f(z)]: z€ B} > 0.
Then either inf {| f(z)|: z€ K} > 0 or there exist finitely many points
2y, %, of K, a differentiable function g on K, and ¢ > 0 such
that, for each z in K,

f(&) = (2~ 2) (2 — 2,)9(2)
and |g(z)| = e. [

Although this theorem is strong enough to yield the Funda-
mental Theorem of Algebra as a consequence {1, p. 140, Thm. 8], it
conveys no information unless the border B of K is strict, in the
sense that d({, B) > 0 for some { in K (in which case we say that
K is strictly bordered). In particular, circles in the complex plane
are not strictly bordered, but we often want to know whether or not
f is bounded away from zero on certain circles in its domain. (This
question is particularly relevant when we are trying to integrate
f'/f round circles.) In fact, we might expect that, if f is analytic
and not identically zero on a connected open set U, then it is
bounded away from zero on all but finitely many circles in any
given disc well contained in U.

On the other hand, even if the compact set K has a strict
border B, it is easy to see that we cannot expect to decide whether
or not the modulus of a differentiable function f on K has positive
infimum on B: consider the example where K = B(0,1), B = {zcC:
|z] = 1} and f is the function z —» 2z — {, { being a real number for
which the alternative “¢ > 1 or { £ 1” is undecided.

This last example also illustrates why we cannot expect to
locate precisely the zeroes of an analytic function which lie in a
given compact set. However, it is reasonable to expect that, if f
is analytic and not identically zero on a connected open set U, and
K is a compact set well contained in U, then we can find all the
zeroes (if any) of f that lie within a distance ¢ of K for some
suitable ¢ > 0.

In what follows, we shall show that the above expectations are
fulfilled. As a bonus, we shall obtain a proof that, if f is analytic
on an open set U and nonvanishing on a compact set K well con-
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tained in U, then 1/f is bounded away from 0 on K. This last
result is particularly satisfactory in view of our present inability to
compute a positive lower bound for a continuous mapping of a
compact interval into the positive reals [3].

2. The cornerstone of our paper is Theorem 2 below, which,
applied to a differentiable function f on B(0,1) with |f(0)| > 0,
enables us to estimate the number of zeroes of f inside, but near
to, a circle of center 0 and any given positive radius p < 1. More
precisely, it enables us to find circles, of center 0 and radius arbit-
rarily close to o, on which f is bounded away from zero.

The proof of this theorem is sufficiently complicated to warrant
a few remarks on its origin. Classically, a function f that is
differentiable and not identically zero on B(0, 1) has at most finitely
many zeroes in B(0, p) whenever 0 < p < 1. In order to obtain a
constructive analogue of this proposition, it is natural to look for
an explicit a priori bound on the number of zeroes in B(0, p). As
it happens, if | £(0)| > 0 such a bound exists classically [7, 5.24, p.
171]; it was with that bound in mind that we were able to obtain
the numerical estimates that we need for Theorem 2.

The other thing we need is an inequality which provides lower
bounds for |f(z)| as z ranges through B(0, 1). That this need can
also be satisfied is the content of

LEMMA 1. Let f be differentiable on the closed disc B(0, 1),
with sup{| f(@)|: 12| =1} = 1. Then

O — L]
A Y OIE]

for all z with |z] < 1.
Proof. Let |{] < 1, suppose that

FOI< (O] — [ED/A = [FOIIED,

and choose a so that 0<a<1 and [f)|> (a|f(0)]— (L))
A —alfO-1L). As |laf(0)| = a <11, p 134, Proposition 5], we
can apply to af the argument on pages 60-61 of [6], to obtain

FO1 2 1af©] = (af©)] — 12/ — laf©)-1),
a contradiction. Hence, in fact, | £(O)[=(0))—1L)/A—{£O[-C). (]

In the following theorem, we adopt the convention that

a1+ (p—1 - 1)p~1/0)—1 =0.
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THEOREM 2. Let v be a natural number, 0< p <3, and
¥y * -, 7, distinct real numbers with
QA+ @ —Do M) *=rm=p

for each k. Let f be differentiable on B(0, 1), with |f(0)] > 20"+/
1 —p)y and sup{|f@)|: 12| =1} < 1. Then

max inf {(£@)]: 2] = 1} > 0.

Proof. If v =0 then, by Lemma 1,
[f@)] =z (fO) — |2zD/A = [FO0)]]z)) >0 (2] =p).

Now let n be a positive integer, suppose we have proved Theorem 2
for v = n — 1, and consider the case v = n. Either 20"/(1 — p)"* <
| f(0}|, in which case we are through; or, as we now suppose,
| £(0)] < 20"/(1 — ). Let

M= 2/’;@0(1 —r,
a= max jzzg;k((l + rflrs — D)
and define
F(z, Zop “* %y Ru1y Aoy = * ° a”_l)
= f@ ~Za I (- 2@ - 2)

for 2] <1, a,eC, |z,|]=7, =0, ---, » — 1). Observe that

21T 7 — 1£O)17, IT A = )
= 201 + (o™ — Do)
— 1@ — (@ + (o7 — Do)~
= (L + (p™ — D)@ — [ FO)[A — p)p™)
>0
and that

FOITL = m)— 2]

z |01 — o) — 20+
>0.
It follows from these inequalities and a simple argument using

uniform continuity that there exist positive numbers ¢, m such
that
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lF(O; Roy * s Bp1y Uy ** 7, a”—l)ll;ljo(l - 'rk) - 2,:!.;[07'1«:

n—1 n—1
2;!:__10,"k - 'r'an(O; Zoy *tty Bpyy Aoy * 0, an-—l) [ ;‘[;[0(1 - 7‘Ic)

v

m

whenever |z, =7, |6, | <6 k=0, .-+, n — 1).
Let @ be a modulus of uniform continuity for |F| on the com-
pact subset

{(zy 2y *° 0y zn—ly a’O! Y a’n—-l): lzl = T |zk| = Th la’kl é 8
(k=0) ”';n_l)}

of C*', where the latter is taken with the norm |x|=max,_,.... ., .2
Either

0< sz)fl_?j’!i_linf {|f@)]: 2] = 4}
or, as we now assume,
max_inf {|/@)]: 2] = )
< min (5, 1/na, @2~ Mmkl;"[ 7 — 7)) .

Choosing z,, --*, 2,_, so that, for each %, |z,| = 7, and

| f(2)] < min (a, 1/na, co(2‘1 Mm ;i';[:l'rk - mw[)) ,
define

g(z) = F(z’ gy "ty Bpyy f(zo): Tty f(z'n—l)) ((Zl g 1) .

Then ¢ is differentiable on B(0, 1) and g(z;) = 0 for k=0, ---, n— 1.
By [1, p 182, Cor. 4], there exists a differentiable function % on
B(0, 1) such that

9() = (2 — 20)- (2 — 2, )h(z)  (2[=1).
For |z| =1, we have
k@ = 19|/ T -
< (F@|+aZlf@ [ILa -
s(t+aSamo)/Ta-rm=mu.
By the maximum principle [1, p. 134, Proposition 5], |h(z)| < M for

each z with |2| =< 1. Given 2z with |z| = 7,, we now apply Lemma
1 to M~'h, to obtain
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M= 1@)| 2 (1O)] — M1z D/ — 12]-|h(O))
9@ T~ ) — 211,

n—1 n—1
Zlgom — 7,/9(0)] ,go(l — %)

IF(O, Roy * g Ry f(ZO)! Ty f(zn*J)‘:[:I:(l B ,rk) o 2k]j(:)7'k

2107 = 7l FQO, 20 -, 20y S, -+, £/ T (L= 72)

v

m .

Hence
9@ 2 (k@I TL |7, = 7.l 2 Mm IT |7, — 7,
and so

!f(Z)[ = |F(zy Boy "y By 09 ) 0)'
Z 1 F@ 2 ey 2y £@) o, £ )| — 27 Mm ] I, — 7,

=21 Mm:ij:lfrk -7, .
Thus
inf (| £@)]: || = 7.} Z 27 Mm [T |7, — 7| >0,
and our induction is complete. ]

3. We now use Theorem 2 to obtain a rich supply of circles
on which a given analytic function, not identically zero, is bounded
away from 0. In turn, this will enable us to factor out the zeroes
of such a function which lie in or near a compact set well contained
in a connected open subset of its domain.

LEMMA 2. Let f be differentiable and not identically zero on
B(0,1), and let 0<e<p<% Then there exists r such that
p—e<r<pand inf{ f)|:|z] =7} >0.

Proof. Let X7, a,2" be the Taylor expansion of f(z) about 0,
the series being uniformly convergent in B(0, p). Then there exists
n such that |a,| > 0. We proceed by induction on x.

Clearly, we lose no generality by taking |f(z)|] <1 for all z
with |z| < 1. If n =0, we choose a natural number vy such that
| £(0)] = |a| >20"/(1 — p)* and (1 + (0" — 1)o~**)*> p — ¢, and then
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apply Theorem 2 to f. On the other hand, if we have proved the
lemma for any f with max,_,...,.|@;] > 0, and we consider the case
|a,| > 0, then, by the foregoing, there exists » with p —e <r < p
and

0 < m = inf {)é‘,akz"—”l: 2] = 7} .

Either 0 < max,,,...,,_1]@;| Or, as we may assume, maX,,. ... ,_; |0 <
r*m/2n. For |z| = r, we now have

f@) 2 |21 S ezt | — Bla, )|zl
zrm— 3 ol
> r"m/2 , )
whence inf {| f(2)]: [z] = 7} = r"m/2 > 0. ]

LEMMA 8. Let LeC,r >0, and let f be differentiable on B, r),
with inf {| f(z)]: |z—C|=7}>0. Then either inf {| f(z)]: |z —{|<r} >0,
or there exist finitely many points 2z, ---,2, of B, r) and an
operation 0: R* — R* such that f(z,) =0 for each k, and |f(z)| =
o(a) whenever a >0, |z — (| Zr and |z — z,| = a for each k.

Proof. By Theorem 1, for each k either inf {|f(z)|: |z—C|Zr}>
0 or there exist finitely many points 2, ----, 2, of B, ) and a
differentiable function g on B({, ) such that

f@)=(@—2)--(—2)9  (2eBE, 1)

and 0 < ¢ =inf {|g(®)]: |2 — | = r}. In the latter case, we need only
set é(a) = a®c for each a > 0. ]

Let P(x) be a statement about the object z, and let A be a
subset of B. We say that P(x) holds for all but finitely many x
in A if there exist finitely many elements z, ---, 2, of R such that
P(x) is true whenever x belongs to A and is distinet from each of
the x,.

PROPOSITION 1. Let f be differentiable and mot identically zero
on B(0,1), and let 0 < p<1l. Then inf{ f(2)|:|z] =7}>0 for all
but finitely many r with 0 < r < p.

Proof. Choose s so that o < s <1 and inf{| f(2)|: |2] = s} > 0.
In view of Lemma 3, we can assume that there exist finitely many
points 2, ---, 2, of B(0,s) and an operation d: Rt — R* such that
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| f(2)| = 6(a) whenever a >0, |z| <s and |z — z,| = a for each L.
It is then clear that

inf {| £(2)]: |2] = ) Z 8 min |7 — [2,]]
whenever 0 < » < p and |7 — |z,[| > 0 for each %. ]

Let U be an open subset of C. A path in U is a uniformly
continuous mapping v of [0, 1] into U with ~([0,1])~cc U. We
say that U is connected if, to each pair of distinet points z, z’ in
U, there corresponds a path v in U with v(0) = 2z, v(1) = 2.

THEOREM 3. Let f be analytic a/nd_ not identically zero on the
connected open set U, Le U, r>0 and B, r)ccU. Then inf {|f(2):
[z — £ = p} > 0 for all dbut finitely many p with 0 < p < 7.

-Proof. In view of Proposition 1, it will suffice to prove that
f is not identically zero on B({, r). To this end, choose 2, in U
with | f(z,)| > 0, and construct a path v in U with v(0) = %z, and
v(1)={. Compute in turn é so that 0<é<r and {zeC: d(z, v(0, 1)<
60}c U, and numbers 0 =1¢, <t < -+ <t,=1 such that |v(t.) —
v(t,)] < 26 for each k. Then B(v({.+.), 0) intersects B(v(t,), d); so
that, by Proposition 1, if f is not identically zero on B(¥(t,), 6),
then it is not identically zero on B(v(t;+), 8). As [f(z)| >0, it
follows that f is not identically zero on B(¢, d)cB(C, 7). |

THEOREM 4. Let f be analytic and not identically zero on the
connected open set U. Let K be a compact set well contained in U,
and ¢ > 0. Then either inf {| f(2)|:2€ K} > 0 or there exist finitely
many points z, -+, 2, of U and an analytic function g on U such
that

f&)=(@—2)-(2—2)9() (2eU),
inf {|{g(z)|:2e K} > 0, and d(z,, K) < ¢ for each k.

Proof. With 6 chosen so that 0 <25 <e and {zeC:d(z, K) <
20yc U, let {C, ---,C} be a d-net of K. It will suffice to prove
that there exist analytic functions f, = f, f, ---, f, on U such that,
for each kefl, ---, v},

(i) inf{fi®)|: 2e U= BE&;, 0} >0
and

(ii) either f,=f or there exist finitely many points z, - --, z,4
of U such that

f@) = (@ —2z) (2 — Zaa)Si(2)
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for each z in U.

Suppose that 0<k<v and that we have found f,. By Theorem 3,
there exists » such that 6 < » < 26 and inf {| f(2)]: |2 — {ial=7} > 0.
By Theorem 1, either inf {|f(z)|: |2 — {44} < ¢} > 0, in which case
we set f,., = f3; or, as we may now assume, there exist finitely
many points z, ---, 2, of B+, ) and a differentiable function g
on B(l.., r) such that

fil) =@ —x) (2 — 2,)9@)  (#€ B, 1)

and inf {{g()|: |2 — (il = 7} > 0. It follows from [1, p. 132, Cor.
4] that there exists an analytic function f,,, on U such that

Fi(®) = (2 — x) - (2 — Tp)firs(?) (zeU)

and g is the restriction of fi., to B, ). Our inductive assump-
tions about f, now ensure that f,., also satisfies (i) and (ii). This
completes our induction. 1

Another path to Theorem 4 has been taken by Orevkov [5],
who uses [1, p. 136, Lemma 8] to estimate the number of zeroes of
f in the region of interest. It is worth noting, and not difficult
to show, that the estimates given by Theorem 2 above are much
more efficient than those embodied in {1, p. 136, Lemma 8].

Note that the only application of the connectivity of U in the
above proof of Theorem 4 is in the construction of » such that
inf{| f(z)]: |2 — {pa) =7} > 0. It follows from Proposition 1 that
the conclusion of Theorem 4 will hold even if U is not connected,
provided that f does not vanish on some dense subset of K. With
this remark in mind, we can now derive our final results.

THEOREM 5. Let f be analytic on the open set U, and let K
be a compact set well contained in U on which f does not vanish.
Then inf{{f(z)]:2e K} >0, and 1/f is differentiable on K.

Proof. Either inf {| f(2)|: 2€ K} > 0 or there exist finitely many
points z, -+, 2z, of U and an analytic function ¢ on U such that
fR)=(—2) (2 —2,)9() (2eU)
and 0 < m = inf {|g(2)|: z€ K}. In the latter case, for each z in K
and each j, we have |z — z;| > 0; whence [2, p. 29, 2.2]

0<d= min d(z;, K) .

=1,--+,

Thus | f(z)| > d"m for each z in K. Then desired conclusions follow
immediately. O
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COROLLARY. Let f be analytic and nonvanishing on the open
set U. Then 1/f is analytic on U. ]

ACKNOWLEDGMENT. This paper was written while the author
was visiting the Department of Mathematics at New Mexico State
University. The author is grateful to Allan Calder, William Julian,
Ray Mines and Fred Richman for their contributions to the discus-
sions which led to Theorems 3-5. He is particularly grateful to
the last-named for pointing out an error in the original version of
the proof of Theorem 2.

REFERENCES

1. Errett Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
2. D. S. Bridges, Constructive Functional Analysis, Research Notes in Mathematics, No.
28, Pitman, London, 1979.

3. , A criterion for compactness in metric spaces?, Z. Math. Logik Grund. Math.
25 (1979), 97-98.

4. Allan Calder, Constructive Mathematics, Scientific American, October 1979, 146-172.
5. V. P. Orevkov, New proof of the uniqueness theorem for constructively differentiable
Junctions of a complex variable, J. Soviet Math., 8, No. 3, (Sept. 1977), 329-334.

6. E. G. Phillips, Some Topics in Complex Analysis, Pergamon Press, Oxford, 1966.

7. E. C. Titchmarsh, The Theory of Functions, Clarendon Press, Oxford, 1932.

Received November 30, 1979 and in revised form March 14, 1980.

University CoLLEGE
Buckineuam MK18 1EG, Encranp



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
Huco RosSI Los Angeles, California 90007
University of Utah R. FINN and J. MILGRAM
Salt Lake City, UT 84112 Stanford University

C. C. MOORE and ANDREW 0GG Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 96, No. 1 November, 1981

Hédi Amara, Groupe des classes et unité fondamentale des extensions

quadratiques relatives a un corps quadratique imaginaire principal ........ 1
Douglas S. Bridges, On the isolation of zeroes of an analytic function ....... 13
Andrew J. Casson and John L. Harer, Some homology lens spaces which

bound rational homology balls ........ ... ... ..o i, 23
Z. A. Chanturia, On the absolute convergence of Fourier series of the

classes HEO M VU] oo e e 37
J.-F. Colombeau and Mario Carvalho Matos, On some spaces of entire

functions defined on infinite-dimensional spaces ....................... 63
Edwin Duda, Pointwise periodic homeomorphisms on chainable continua ....77
Richard F. Gustafson, A simple genus one knot with incompressible

spanning surfaces of arbitrarily high genus ............................ 81
Fumio Hiai, Masanori Ohya and Makoto Tsukada, Sufficiency, KMS

condition and relative entropy in von Neumann algebras ................ 99
Ted Hurley, Intersections of terms of polycentral series of free groups and

free Lie algebras. IT ..... ... e 111
Robert Edward Jamison, II, Partition numbers for trees and ordered sets ...115
R. D. Ketkar and N. Vanaja, A note on FR-perfect modules ............... 141
Michihiko Kikkawa, On Killing-Ricci forms of Lie triple algebras ......... 153

Jorge Lewowicz, Invariant manifolds for regular points ..
Richard W. Marsh, William H. Mills, Robert L. Ward,
and Lloyd Richard Welch, Round trinomials ......
Claude Schochet, Topological methods for C*-algebras.
SEQUETICES - - v e vvt et et et e e e e e e
Yong Sian So, Polynomial near-fields? .................
Douglas Wayne Townsend, Imaginary values of meromo
thedisk ...
Kiyoshi Watanabe, Coverings of a projective algebraic
Martin Michael Zuckerman, Choosing /-element subset
SIS + et e e e



http://dx.doi.org/10.2140/pjm.1981.96.1
http://dx.doi.org/10.2140/pjm.1981.96.1
http://dx.doi.org/10.2140/pjm.1981.96.23
http://dx.doi.org/10.2140/pjm.1981.96.23
http://dx.doi.org/10.2140/pjm.1981.96.37
http://dx.doi.org/10.2140/pjm.1981.96.37
http://dx.doi.org/10.2140/pjm.1981.96.63
http://dx.doi.org/10.2140/pjm.1981.96.63
http://dx.doi.org/10.2140/pjm.1981.96.77
http://dx.doi.org/10.2140/pjm.1981.96.81
http://dx.doi.org/10.2140/pjm.1981.96.81
http://dx.doi.org/10.2140/pjm.1981.96.99
http://dx.doi.org/10.2140/pjm.1981.96.99
http://dx.doi.org/10.2140/pjm.1981.96.111
http://dx.doi.org/10.2140/pjm.1981.96.111
http://dx.doi.org/10.2140/pjm.1981.96.115
http://dx.doi.org/10.2140/pjm.1981.96.141
http://dx.doi.org/10.2140/pjm.1981.96.153
http://dx.doi.org/10.2140/pjm.1981.96.163
http://dx.doi.org/10.2140/pjm.1981.96.175
http://dx.doi.org/10.2140/pjm.1981.96.193
http://dx.doi.org/10.2140/pjm.1981.96.193
http://dx.doi.org/10.2140/pjm.1981.96.213
http://dx.doi.org/10.2140/pjm.1981.96.225
http://dx.doi.org/10.2140/pjm.1981.96.225
http://dx.doi.org/10.2140/pjm.1981.96.243
http://dx.doi.org/10.2140/pjm.1981.96.247
http://dx.doi.org/10.2140/pjm.1981.96.247

	
	
	

