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INVARIANT MANIFOLDS FOR REGULAR POINTS

JORGE LEWOWICZ

In this article we prove, for a differentiable vector field or
a diffeomorphism on a smooth manifold, that the set of points
such that the semitrajectories issuing from them approach
a particular semitrajectory at a given exponential rate,
constitute a differentiable submanifold, provided the differen-
tial of the flow has a certain similar behavior on that
trajectory. (See Theorem 1 below, for a precise statement).
In particular, the stable manifold theorem for hyperbolic
sets ([3], [6, XI]) follows as a corollary.

Although we only consider the Ci-case, the same methods,
which are essentially classical ([2, Ch. XIII]), could be applied
to obtain higher differentiability properties.

Since I have not seen in the literature this type of
results for points which are neither equillibrium nor periodic
points, and on account of [6, XI-8], I thought that their
publication might not be entirely devoid of interest.

1. Terminology and notation are standard. If X is a differen-
tiable vector field on a smooth manifold M, ¢ will always denote the
corresponding flow, and ¢, the diffeomorphism x — ¢(x, t), x€ M, t ¢ R.
For brevity, we shall sometimes write «(f) or y(¢) instead of ¢(x, t)
or ¢(y, t) respectively.

THEOREM 1. Let M be compact smooth (C*) Riemannian mani-
fold and X a C'-wvector field. Assume that for some x € M, there are
subspaces E, I, EP I = T, M, such that for some positive mumbers
K, o, 1t <\, we have

(1) lgi(x(t))e. || < Ke™*|le,|l for ecg@)E,s,t>0,
and
(2) lo_(@(@®)i, || < Ke*|| %]l for d,e¢i(x)],0<s<t.

Then, Wix) = {y € M/lim (1/t)log dist (4(y, 1), s(@, 1)) < —\} is @
Cr-submanifold of M, such that T,Wy(x) = E.

Condition (1) means that ¢; strongly contracts the bundle
U:so 9i(@)E, while (2), which is equivalent to
(2) | ¢@@)ic || = He™*|[4,[| , ¢8>0

for some H > 0, only says that ¢: does not contract as strongly on
Ut>0 ¢£(x)I'
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The following theorem may be proved applying Theorem 1 to
the suspension of M. (See [1], Ch. 1))

THEOREM 2. Let M be a compact Riemannian smooth manifold
and f a C'-diffeomorphism of M. Assume that there exists a point
xe M and subspaces E,, I, B, D I, = T,M such that for some positive
numbers K, p, q, p < ¢ < 1, we have

(1)  If™(f"@)e.ll < Kp*lle |l , for e,ef"(@E,, m,n>0.
(2) @yl < Kg™lill, for d,ef*@IL, 0<m<m.

Then W,(x) = {y € M/lim,_.. (1/n) log dist(f*(y), f"(x)) < —log p} s
a C'-submanifold of M, such that T.(W,(x)) = E..

Proof that Theorem 1 implies Theorem 2: Consider the suspension
M of M, equipped with some Riemannian metric, and the corresponding
vector field X. (We shall identify M and #n(M x {0}), = being the
canonical projection of M X R onto M ).

Since X # 0 on M, Theorem 1 may be applied to the semitrajec-
tory ¢(x, t), ¢ > 0, taking E, as E, the subspace spanned by I, and
X(x) as I, and letting —log », —log ¢ play, respectively, the roles of
N and . In this way, we get a C'-submanifold W(x) of M; but if
y = n(y, s), and s is not an integer, dist(¢(y, ¢), ¢(x, t)) is bounded
away from zero for ¢ > 0. Thus, Wyx) C M, and this clearly implies
Wix) = W,(x). Since T ,W,(x) = E,, this completes the proof.

If x lies on a hyperbolic set ([3], [6]), its stable and unstable
manifold may be obtained by a direct application of Theorem 2
(Theorem 1, if we were dealing with a vector field) to the diffeo-
morphisms f and f—'.

2. The results of this section will enable us to replace the mani-
fold M by an open subset of Euclidean space.

Let M be a compact connected smooth submanifold of R¥ and
let » be the retraction x — »(x), where 7(x) is a point of M with the
property

|z — »(®)|| = dist(x, M) .

If the domain of » is restricted to a suitable neighborhood 2 of
M, then r becomes a well defined smooth function (see [3]), such
that »(x) — = is orthogonal to M for each xe€ L. Since for ze L,
7'(2): R¥ — RY is of maximal rank » = dim M, and »'(x)v = 0 if » is
orthogonal to T,.,,M, we have that for each u € T, M there is exactly
one vector ve T, ,, M such that »'(x)v = u.
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If X is a vector field on M we may define a vector field Y on 2
by letting Y(x) be the unique vector of T,.,M such that +'(x)Y(x) =
X(r(x). If XeCr, r> 1, then, clearly, YeC"; also Y/M = X.

LEMMA 3. Let a be a real number and Z° the vector field defined
“on £,
Z*=a(r(x) —x)+ Y.

Then, the mormal bundle N(M) of M 1is invariant under the
Sflow ¢* determined by Z* and

o' (@] = e vl
for every x€ M and ve N,(M).
Proof. The invariance of N(M) follows from the following
relation: '
(@) Z%x) = r'(@)Y(x) = X(r(®)) = Z(r(x)) ,

which clearly implies that 7(¢?'(x)) = ¢%(r(x)) for xe Q.

The assertion concerning the norm of ¢’ is a consequence of the
following equalities, where we have written (, ) for the inner product
in R¥:

Z4|[r@) — 2 |]") = 2((r(2) — x), ('(@)Z*(x) — Z°(%)))
= 2((r(®) — ), (Z°(r®)) — Z°(®)))
= 2((r(®) — »), X(r(@)) — Y(@) — a(r(x) — »)) .

Since ((r(z) —2), X(r(x)) — Y (%)) = 0, we have that Z°(||r(x) — z||*) =

—2a|jr(x) — z||>. Therefore,

| %, ) — ¢*(r(x), O)|| = e[|z — r@@)|I,
which clearly implies the thesis.
Consider now a C'-vector field X on an open connected subset
2 of R*, and a semitrajectory {4(z, ¢), t > 0} of X, whose closure is

compact and contained in 2. Theorem 1 is a consequence of the
following proposition.

PROPOSITION 4. Assume that there are subspaces E,, I,, B, I,=
R*, such that, writing E,(I,) for ¢.(x)E, (resp. ¢:(x)],), we have

(1) || gz (®))e,|| < Ke*|le,||, for ecKE,t>0,s>0,
(2) 2o || < Ke*|[4,] , for d.el,, 0<s<t,
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Jor some positive numbers, K, \, t, tt < .

Then Wix) = {y € Qlim,_,« (1/¢) log|{¢(y, &) — ¢(z, )| < —\} is @
C'-submanifold of R™ tangent to K, at x.

Proof that Proposition 4 implies Theorem 1. We may assume
that M is embedded in, say, R". Extend the vector field X to a
neighborhood 2 of M as in the previous lemma, choosing a > \.
Let E, be the subspace spanned by E and N,(M) and take I, = I;
we may now apply Proposition 4 to get a C'-submanifold Wi(x) of
R*. Then, W) = r(Wiy(x)), is a manifold (see [4], Lemma 3) and
since 7'(x)E, = E, the proof is complete.

3. In this section we prove two preliminary results.

Consider, as before, a C'-vector field X on an open connected
subset 2 C R", and a semitrajectory {s(x, £), ¢ > 0} whose compact
closure is included in 2. Let E, I, ¢ > 0 be as in Proposition 4,
and call P,(Q,) the projection of R* onto E,(I,) along I,(resp. E,).

LemMA 5. There is a positive number M, such that || P,|| < M,
Q.1 <M, t>0.

Proof. Suppose that || P,| is not bounded for ¢ > 0. Then we
may find a sequence ¢, — oo and vectorse, €K, , 4, €I, ,n=1,2, ---
such that e, || — o and |e, + i, = 1. Moreover, we may assume
that ¢(x, t,) converges to y € 2, and that (e, /|| e, ||) converges to some
unit vector uwe R". Since (—i, /|4, |]) must also converge to u, we
have that for ¢ > 0, | ¢i(y)ul| < Ke=* and ||¢;(y)u| > He " (see 2') in
§2) which is absurd. Inasmuch as P, + @, = Id, t > 0, this completes
the proof.

The following technical lemma will be useful.

LEMMA 6. Assume that ¢(y, t) is defined in |0,b). Then, for
0<t<b, we have

60, 1) — 9(a, 1) = Gy — @) + | $(6)Aw), yE)ds,
where 4@, ) = X(v) — X() — J@)y — 2).
Proof. From

%@(y, £ — d(z, 1) = X6, £) — X, 1)
= J@®)Y(E) — 2(®) + A, y(b) ,
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we get
¢'—t(x(t))—d%-(y(t) — 2(8)) — $L(x(@)J (@) (Y (8) — ()
= gL (x())4(x(t), ¥(?)) ,

which implies
7%(¢'_t(w(t))(y(t) — x(t))) = ¢L.(x(t)4((t), y(t))

since ¢”.(x(t))-¢i(x) = Id and (d/dt)gi(x) = J(x(t))¢:(») ([2], Ch. I). By
integration we find

t
oL (2®)(y@) — () = (y — ») + Sosﬁ’_s(x(S))A(W(S), Y(s))ds
and applying ¢/(x) on the left we obtain the thesis of the lemma.
4. LeEMMA 7. Assume that y(t), t > 0, is a semitrajectory of X
such that ||y(t) — x@)| < ae™ ", where aa >0 and pt < v <. Then
y(t) satisfies the integral equation

y(t) = o(t) + H@PW — o) + | $_P.A@(E), ())ds

— {76106 Quaa(5), w(s))ds .
Proof. From Lemma 6 we get
y®) = a(t) = F@ Py — 7) + | §_.(a(6) P.A@(e), y(@)ds
+ 4@ @ — 2) + | $1.(0(:)QuA(w(5), y(s)ds -
Since for large s,
X)) ~ X@@) = | I - we) + wEduwe) - o) ,

we have that [|4(x(s), ¥(s)) || < ¢ly(s) — x(s)|| for some ¢ > 0; if ¢ is
taken large enough, the same inequality holds for all s > 0. Then,

from the above formula we obtain, on account of (1), that

et

@@ — o) + | 6. @©)RA6), ye)ds

t
<o+ KMe %ty — x| + KMcae™ S e Mt=9g-Tsds
0

which is bounded for ¢ > 0. By (2') this implies the boundedness,
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for ¢ > 0, of

HQO(?/ — ) + S:¢’_s(x(s))Qsd(x(s), ’y(s))dSHe(r—y)t .

Thus, Q,y — ) = —Sm¢’_s(x(s))Q3A(x(s), y(s))ds as we had to show.

On the other hand it 0is important to notice that if y(¢), ¢ = 0 is
a continuous function with values in Q that satisfies the integral
equation

y(t) = a(0) + gi@e, + | (@) P.A((o), y(s))ds
— |1 (@) Q@) ye)ds ,

e, € K, then y(t) is also a trajectory of X with P,(y(0) —x) = ¢. In
fact, since the differentiability of y(¢) follows by inspection of the
right hand side of the equation, we may differentiate both sides to
get

y@) = &) + J@)@@) — =@) + A=), y(t) = X)) .

5. For each a >0, and v, £ < v <, let y,(v) be the space of
continuous functions ¢ — y(t), y(t) € R", t = 0, such that ||y(t) — () || <
ae ™. If y, zey,(v), let

d(y, ) = sup ly(t) — z@t) || e ;

it is not difficult to check, that with d as the distance, y.(v) becomes
a complete metric space.

Now for ¢, e E,, consider the operator T,:y — 2z, where ycy,.(v)
and 2:]0, ) — R" is given by

D) = a(t) + gi@er + | $1_(@(E)PA@(), y(s)ds
— | - 06)Q.4(6), y)ds ;

the fact that v > #¢ ensures the convergence of the improper integral.
Since for y close to =

4@, v) = (0@ = we + wy) - T@du)y - =),

the continuity of J implies that for each ¢ > 0, it is possible to choose
a = ae) > 0, such that if ||y — z| < a,

4@, p)ll <elly — | .
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For a given v, ¢t <v <, choose ¢ = ¢(v) such that eKM((» — 7)™ +
(v — @™ =1/2, and let a(y) or simply «, be the corresponding
a(e(v)).

LemmA 8. For each e € E, with |e| < a/@QK), T, is a con-
traction of y.(7v).

Proof. We first show that for those e, T\, ¥a(Y) — Ya(¥).
Let ¢ — y(t) belong to y.(v), and let z = T, (y); then, by (1) and
(2), we have, for t > 0,

ll2(t) — x@) | e = Ke """ ||e, ||

t
+ KMe qe 07" S s + KMsae‘f"””S etrds
0

<K]]eoll+aeKM()\Ji7 + #_1_7>§a.

On the other hand, if ¥, 7ey.(v) and 2 = T, (y),z = T. (%), we
have that

17) — sl = KMee=r* | dly, e ds
0
+ KMee | "y, pev-rids,
t

for ¢t > 0, and consequently, d(z, Z) < (1/2)d(y, ¥). This completes the
proof.

Thus, if ¢, is small enough, there is one and only one fixed point
y(t, e;) of T, in y,(7), and on account of previous remarks, this fixed
point is the unique semitrajectory of the vector field X, satisfying
Py(y(0, e;) — x) = ¢, that belongs to y.(7).

Since the continuity in ¢, of ¥(¢, ¢,) is an easy consequence of
uniqueness, and y(0, ¢,) = %(0, e;) implies readily e, = ¢}, we may state,
letting f = (0, ¢,):

COROLLARY 9. Let B, = {e,€ E/| e || < a/2K}. There is a con-
tinuous injective fumction f:B,— R" with the following property:
a semitrajectory of X, ¢(y, t), t = 0, satisfies

oy, t) — a2@®)|| <ae ™, t=0, and Py —x) =e¢€B,,
iof and only if, y = f(e).

6. Now we study the differentiability properties of f(e,) or
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y(t, ;). If the derivative of (¢, ¢,) in the direction of the unit vector
u € E, exists at ¢,, and if we could differentiate under the integral sign,
we would have that this derivative, z,(, ), || el < @/(2K), satisfies:

aut, e) = i@ + | 6 @@PUIW, @) — T, eds
— {6 @E)QUUIWE, &) — T2, e)ds .
Let V be the space of continuous functions(t, e,) — 2(t, €,), t > 0,

llell < /2K, 2(t, e,) € R*, such that ||z(t, e)| < 2Ke . With the dis-
tance d,

d(zy E) = S}]}g ”z(tr eO) - —Z_(t, eO) H ert ’

llegli<a/2K

V is a complete metric space.
LEMMA 10. For zeV, define T.(z) = w by
wit, &) = i@ + | 6 @OPIWG, ) — J@E)(s, e)ds
— |8 @@, @) — T, e)ds -
Then, for each we E, |u| =1, T, is a contraction of V.

Proof. Since

lw(t, )| < Ke™* + 2K*Mee™* Ste“*”*ds

0

+ 2K*Mege—** re“‘“”*ds

t

< 2Ke T,

T, maps V into V. The fact that T, is a contraction follows at once
from the inequality

w(t, e) — W(E, e)|| < KMse—“Ste”—”sd(z, 2)ds
0
+ KMee Swe“‘“”*d(z, z)ds

and the choice of «.
Now, for h # 0, consider the quotient

au(h, t, &) = —,1;<y<t, e + hu) — y(t, e))

= g.(t)u
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+ [ s o) P (X, e + b)) — X(w(s, @)
— J@)au(l, 5, e))ds
~ |0 @)@ X, o+ hu) — X(w(s, )
— J(@(8))qu(h, 3, €,))ds
and the difference
Bulht, @) = 4ulh t, ) = 2t €
= | #@@PIW, @) — TN, 5, e)ds
+ | $@@PDM, 5, e)ds
— @RI, €) — J@E)d.M, 5, eds
— ("o @E)@.D.h, 5, e)ds,
where
Dully 5, &) = T(XW(s, & + hw) — X(w(s, e)) = JW(s, e))aulh, 5, ) -
Let m(h) = sup;s, ||0.(k, ¢, &) || e, b # 0; then, since
la®) || = (mh) + 2K)e™*,
from the last equation we get, on account of
I Db, 1, €]
= [ 7@ = nut, @) + 7y, e+ m)ar — T, @)

H(Iu(h, t} e) ” ,

that
8.k, 8, e) || o7t < EMemt)  KMo(h) (4 2k)
N— N—
+ EMem(h) | KMo(R) (1 + 2K)
v v
where

o) = sup | ['ar(t — Muct, &) + 1w, & + b)) = Tt @)

Because of the choice of ¢, we may write the last inequality, as
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(% B KM(xiv N 71#>‘O(h)>m<h)§2K2M<xiv * v i #>p(h>'

Since lim,_, o(h) = 0, we get that lim, ., m(k) = 0.

This shows that the derivative of y(t, e,) in the w direction is
the continuous function z,(t, ¢,). In particular, it follows that f
(see Corollary 9) is a C'-function.

COROLLARY 11. Let B, ={e, € E, /|, | =a/2K)}. For each t,=0
there is a continuously differentiable injective function f,: B, — R"
with the following property: a semitrajectory of X, ¢(y,t), t > 0,
satisfies ||4(y, t)—a(t,+1) || <ae ™ for t>0, and P, (y—x(t,)=e; € Ba,y»
if and only if, y = f(e,). Furthermore, f/(0u = u, ucE,.

Proof. It is clear that we would have obtained the same results
if we had started from any semitrajectory ¢(x(¢,), t),t =0, ¢, = 0.
Moreover, it is easy to check that, for a fixed v, the constants &(7)
and a(y) that we have chosen for the semitrajectory x(¢), t = 0, are
also adequate for the semitrajectories ¢(x(¢,), ), ¢ = 0, t, = 0. So, with
the exception of the last one, all the assertions of the corollary are
a consequence of previous arguments. The last statement follows
by inspection of the integral equation satisfied by z,(t, e,) in the case
e, = 0.

7. LEMMA 12. Assume that for some L >0 and some v, ¢t <
v <N |8, t) —a@)|| < Le ', t = 0. Then yc Wik).

Proof. Let v be a number greater than v and less than, but
close enough to n. We may assume that a(y") < a(y); take ¢ > 0
such that

Mo(v")

Le-1t a(y); Le i
e T < a(Y') et <L Ve

and observe that as a consequence of the last inequality, there is a
point z € R", such that

ll6(z, 1) — x(t, + D] < a(¥)e ™,

for ¢t = 0 and P, (z — x(t) = P, (6(y, t) — a(ty)).

As both, ||¢(z, t) — x(t, + t)|| and ||¢(y, t, + t) — x(t, + t)|| are less
than a(v)e-® we must have ¢(z, t) = ¢(6(y, t,), t) for ¢ = 0, which
implies || ¢(y, t) — x(t)|| < Ne~""*, ¢ = 0, for some N > 0.

Since ¥ may be chosen arbitrarily close to », this completes
the proof.
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Proof of Proposition 4. Let y e Wi {x); we have that for some
L >0, and some v, £ < v <, ||¢(y, t) — x(t)|| < Le, if t = 0. Take
a t, > 0 such that Le " < a(v), Le7™ < M(2K)'a(v). Then ¢_, o f,:
B, — R* is an injective C'-function such that its range contains y
and, by the previous lemma, it lies on W,(x). Define the topology of
Wi(x) making ¢_, o f;, to be a homeomorphism onto a neighborhood
of ¥y in W (x). The C'-compatibility of the atlas constructed in this
way is a consequence of Corollary 11 and the differentiability proper-
ties of the flow. The assertion concerning the tangent space to W,(x)
at = also follows from the corollary.
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