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Let f be a meromorphic function in the unit disk, and
let ¢(r,f) be the number of solutions of the equation
Re f(re?) = 0 for 0 < 6 < 2z. In this paper we bound ¢(r, f) off

an exceptional set of » values, and &(r, f)=Sr (i, YA — )" idt

0
for all r, in terms of the Nevanlinna characteristic function

of f. We then give examples to show that the bounds ob-
tained are the best possible.

The quantity ¢(r, f) was studied for entire functions by A.
Gelfond [3] and later by S. Hellerstein and J. Korevaar [5]. The
quantities ¢(», f) and @(r, f) were studied for meromorphic functions
in the plane by J. Miles and the author [10].

We will prove the following theorem analogous to Theorem 1
of Miles and Townsend.

THEOREM. If c¢(r) =1 — a,) + a,r for 0 < a,<1 and f is a
meromorphic function in the wunit disk them there is a constant
A = Ala,) and a set 4 C [0, 1) satisfying

Lexp{T(co(o'), £) — log (1 — P)dr < o

so that for r¢4 and » > R
(i) o, ) <AQ — r)7{Tley(r), f) —log 1 — 7)].
If O(r, f) = §’¢(t, £ — )-'dt then there is an a, so that 0 < a, < 1,
and a constm;t A’ so that for » > R and for ¢(r) =1 — a,) + ar
(i) O(r, ) < A'Q — )7 [Tle(r), /) + A — 7]

We will then give examples to show that no nontrivial lower
bound for ¢(r, f) can be given and that the factor (1 — )~ in (i)
and (ii) can not be replaced by any function b(r) satisfying b(r) =
ol — )" as r— 1.

It is not known whether the exceptional set for (i) is nonempty,
even if f is holomorphic in the unit disk.

We note that the second occurrence of (1 — #)' in (ii) may be
replaced by —log (1 — ), using a proof that is much longer and more
intricate than the one given in this paper. This alternate proof is
a combination of the essential ideas of the proof of Theorem 2 in
[12], together with techniques used in this paper to bound ¢(r, f)
in terms of the characteristic function of f.
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226 DOUGLAS W. TOWNSEND

The technique used in [10] to obtain an upper bound for the
number of solutions of Re g(z) = 0 on |z| = » for ¢ meromorphic in
the plane begins by considering G.(6) = Re g(re*’) as a function of a
complex variable §. After showing that G,.(f) is a meromorphic func-
tion in the #-plane, Jensen’s theorem can be used to bound the number
of zeros of G, in |#]| < &, and hence to bound the number of zeros
of Reg(re’?) for —w <60 <rn. However, if g is meromorphic in
|z| < 1, then G,(¢) is only meromorphic in |[Imé#| < AQl — 7), where
0 < A< 1. Thus, to bound the number of zeros of G.(f) on the real
f-axis using the above technique, we would have to apply Jensen’s
theorem to G,(0) in O((1 — r)™*) disks of radius less than A(l — 7),
centered on the real #-axis, and covering the real #-axis between
—x and w. This complication alone would introduce an additional
factor of (1 — r)~* to the bounds of ¢ and @ in (i) and (ii) of the
theorem. New techniques are used to obtain the correct bounds for
¢ and @.

Also, in [10] the bounds on ¢ and @ involve T(Ar, f) for some
constant A > 1. Such a bound is impossible for » close to 1 if f is
meromorphic in |z| < 1. This complication is resolved by denoting
a convex linear combination of 1 and # by ¢(») =1 —b) + br, 0 <
b < 1, and bounding ¢ and @ in terms of T(c(r), f).*

We assume familiarity with the standard notation of Nevanlinna
theory. It is not intended that positive constants such as A and R
have the same value with each occurrence. Also, notation such as
A(a,), A(a, d), ete. is used to emphasize the dependence of the con-
stants on a, or a and d, etc. Once again it is not intended that
these constants have the same value with each occurrence. Through-
out the paper, if ¢(r) =1 —0b) +br for 0<b <1, then we let
c™(r) = e(e"*(r)). It is easy to show that ¢"(r) = (1 — b") + b™r.

1. Preliminary lemmas.

LemMMA 1.1.> Let f(z) be holomorphic in the circle |z| < R with
fO0)| =1 and let 1 be an arbitrary positive number mot exceeding
(8e)~'. Inside the circle |z] = r < R but outside of a family of ex-
cluded circles, centered at the zeros of f im |z| < R, the sum of whose
radii is not greater thanm nr, we have

log | f(2)| > AR — n)"T(R, f)log7,
provided r and R are sufficiently large.

1 I wish to thank the referee of this paper for suggesting this very useful notation
as well as for making other helpful comments.

2 This lemma was observed several years ago by A. Baernstein, who in unpublished
work used it to obtain a bound for ¢(r, f), off an exceptional set, where f is meromor-
phic in the plane.
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This is an elementary adaptation of Theorem 11 of [7].

LEmMMA 1.2. There are absolute constants A >0, ve€[0,1) and
p, a positive integer, such that if f is meromorphic in |z| < 1, then
there exist holomorphic functions g and h in |z| < 1, such that f =
g/h and

max (T(r, 9), T(r, b)) < AQL — r)*T(A — v) + 7, f) .

This lemma is contained in [1], which carries a result of J. Miles
[9] to the unit disk.

LemMMA 1.3. If f is a nonconstant meromorphic function in the
plane and 0 < a < 1, then there is an A = A(a) so that for r > R
1

2 SZ- |Re (re” "' (re')/ f'(re”)) + 1|d8

< AQ — »T@ — a) + ar, f) —log (1 — #)].

This lemma is contained in (3.10) of [8].

LEMMA 1.4. Suppose f is a nonconstant meromorphic function
in the disk and r 1is such that f'(re’’) #0, o« for 0 <0 <2rx. If
o(r, f) >TAQ0 — »TA — a) + ar, f) —log (1 — )], where A and
a are as in Lemma 1.3, then

8(r, 2f"(2)[f'(2) + 1) > ¢(r, £)/6 .

Proof. Let g(f) be a continuous determination of the argument
of the vector tangent to the curve f(re”’), 0 < 6 < 2x. We recall that

1.1) B'(6) = Re (ref"(re)[f'(re") + 1) .

Suppose 0= a, < a, < a, < 2w, Reflre) =0 for j=1,2,8 and
Re f(re'’) # 0 for a, < 0 < «, except for § = a,. We distinguish two
cases.

Case 1. Suppose |B(¢,) — B¢y | < m for all ¢, and ¢, in [a, ).
By Rolle’s theorem there exist afe{a,, a,) and aje (a,, a,) and there
exist integers », and n, such that g(aj) = n;wx + 7/2, j =1, 2. Since
[B(ar) — B(ad)] < @, we must have g(a;) = B(a;). By Rolle’s theorem
we conclude that in Case I there exists v in (a], a)) C (a,, a;) such
that 8'(v) = 0.

Case II. Suppose there exist ¢, and ¢, in [a, a,] such that
|8(¢) — B(¢x)| = m. Thus, in Case II



228 DOUGLAS W. TOWNSEND

1 (=, , 1
(1.2) %S 80)ld0 = L.

We now let 0560, <6,< --- <80, <2t be a complete list of
solutions of Re f(re*) = 0 in [0, 27), and consider triples (0y;_,, Ou, Ooit1)
for 1 <k < [¢(r, £)/2] — 1. By Lemma 1.3 and (1.2), no more than
2A0 — »T(A — ) + ar, f) — log (1 — 7)] of these triples fall into
Case II. Thus at least

[6(r, H2] — 1 — [2AQ0 — )™ {T(1 — a) + ar, f) —log (1 — )}]
= [¢(r, £)/6]

of these triples fall into Case I, and consequently there are at least
é(r, f)/6 zeros of B'(0) in [0, 27).

LemMMmA 1.5. If f is a nonconstant meromorphic function in the
unit disk, k(r) is a function satisfying k(r) = —log (1 — r) and
e(r) =1 — a,) + a,r where 0 < a, <1, then there is a constant A

and a set 4 < [0, 1), both depending on the function k and on a,,
such that

| exp(T(c.), 1) + krdr <
and for réd and » > R,

SZ log [Re (re”f"(re)[f'(re”)) + 1]7'd0 < A[T(ex(v), f) + k()] .

Proof. Wefollow closely [6, p. 226-227]. Let G(z) = z2f"(2)/f'(2) +1,
and

(@) = |[Re |- <S SA Rea l‘mdw(a)>_l
where w(a) is area measure on the Riemann sphere A. Also, define
Mt @) = |7 p(@(te )| G e”) L + | Gte) ) 2do .
From (14.6.18) of [6], we have
(1.3) S log p(G(re®)do < 8xT(r, G) + log M, G) + OQ) .

We set L(r, G) = Srw, Qtdt and K(r, G) = S L(s, G)s—ds. Then by

(14.6.20) of [6], T(r, G) = K(r, G) — O(l). Denote by 4, the intervals
(alj; Blj) where

Mr, G) > 7t explk(r) + T(e(r), G}L(r, @) .
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We have
S exp k() + T(eu(r), D)dr < S o, GY(L(r, G))-dr
4 4

=, @, @yaLe, 6
< (Ll(au, @) < oo
Denote by 4, the intervals (a,;, 8,;) Where
L(r, G) > r exp{k(r) + T(c,(r), G K(r, G)* .

As before, we have

|, explir) + T, @nar < | (K, @) dxr, 6)
< (K, Q) < oo
Let 4=4 U4, If r¢d and » > R, then

Mr, G) < r7explk(r) + T(e(r), @} L(r, G)F
< rexp(3k(r) + 3T(c,(r), HNK(r, G))*
< rexp{3k(r) + 3T(c,(v), @} (T(r, G) + OQ))*.

Thus for ¢ 4 and » > R and for some constant A,
(1.4) log M7, G) < ABk(r) + TT{(c,(7), G)) .

From Lemma 1.6 and well known properties of the characteristic
function, T(s, G) < A,(T(s, f) —log (1 — s)) for s > R. The lemma
follows readily from (1.3) and (1.4).

We state the following elementary lemma without proof.

LEMMA 1.6. Let f be meromorphic in |z| <1 with |f(0)] = 1.
If » <1 and ¢(r) = 1 — a) + ar for some 0 < a < 1, then

(1) nlr, ) <A@Q — )" Tle(r), f)

(it) n(r, 1/f) < Aoy — r)*T(e(), 1)

(i) T(r, f < A(T(r, ) —log(1l — 7)) for r > R
and

vy T, 1/ < A(T(r, f) —log A — 7)) for » > R.

2. Proof of part (i) of the theorem. Without loss of generality
we may assume that | f(0)| = 1 since if f(0) # 0, = we may consider
f(@)/) f(0)] and if f(0) = 0, - we may consider f(z) + ¢ or 1/f(z) + .

With «, as in part (i) of the theorem, let

a=a and s=c(r)=1—-a)+ ar.

Also define
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2.1 F,(0) = Re (re”f"(re”)[f'(re")) + 1,
and for x€[0, 27)
(2.2) H:0) = F,(x +0) .

We will show that if 6 is complex then H?() is a meromorphic
function in a strip containing the real #-axis. We will apply Jensen’s
theorem to HF(f) in a circle centered on the real #-axis, and integrate
with respect to x to obtain a bound for é(r, (zf'(2)/f(z)) + 1), which
will yield a bound for ¢(r, f). We first let

(2.3) K(t, a, 0) = (t* — ta cos 0)/(t + a® — 2at cos ) .

Then, by the differentiated Poisson-Jensen theorem [4, p. 22], we have

_ 1 (= trosimy | 278((1F 4 8%) cos (0 — p) — 27s)
@4y FO 27 So log | f'(se™)] (8* + 1* — 2rscos (6 — p))* a

— 2 K(a,r, s, 0 —a)+ 3 Kb,r, s, 0 —3,)

0<a,<s 0<b,<s

+ Z K(’ry 2% 0 — an) - bz K(T, bm 0 — Bn) +1
n<3

ay,<s

=I—-II+HII+1V-V+1,

where {a,¢"“»} and {b,e‘*»} are the zeros and poles, respectively, of f',
listed in nondecreasing order of magnitude. We let 4 be complex
and prove

LeEMMA 2.1. The function F.0) (see (2.1)) is meromorphic in
[Iméd| <A — a)l — r) with poles at wvalues of 6 for which Im@ =
+log (rd;") and Red =, + 27k, k =0, =1, +2, ---, where d,e» is
a zero or pole of f' and 0 < d, <s.

Proof. If t = a then K(t, a, ) = 1/2 for all § = 2xk, k = 0, +1,
+2,---. Ift*+ o — 2atcos@® = 0 where a = ¢t and ¢ = { + 13, then

(2.5) 1 < (a* + t)(2at)™ = cosf = cos{ cosh 3 — isinsinh 3.

Thus, { = 27k and cosh 8 = (a* + ¢*)/2at = (a/t + t/a)/2 = cosh (log a/t).
Hence,

(2.6) Red = 2zk, Fk an integer and Imé = +logat.

We have logsr*=logl + (6 —r)r")>1—a)@ —7r) for > R.
Thus, term I of (2.2) is a holomorphic function of 6 in |[Imé@| <
1—-a)@—17r). Also for 0 <d, <s, we have log s*(d,r)* > log sr—*.
Hence terms I7 and IIT are also holomorphic in |[Im 4| < 1 — a)(1 — 7).
Finally, from (2.5) and (2.6), terms IV and V are meromorphic in
[Im4| < 1 — a)(1 — r) with poles at values of ¢ satisfying Imé@ =
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+log rd,' and Red =, + 2rk, k = 0, =1, +2, -
We now apply Jensen’s theorem to HF(f) (see (2.2)) with h =
(1 — a)1 — 7)/2, and integrate with respect to x, to obtain

2 UN(h, LVaz = —(T10g | H20) 1dz + " N, B
(‘ SO <yﬁ?>x_—'go Og} r()|x+so (’ r)x
2r 1 21 " i
o= | og | Hzhe) 1
0o 2 Jo
=L+ L, + L,

In the following four lemmas we obtain a lower bound for the left

hand side of equation (2.7), and upper bounds for the three terms
L,, L, and L,.

LEMMA 2.2. For H? defined above we have

SZKN (h = )dw = 2hg(r, 2f"(@)/f'(2) + 1) .

Proof. By Tonelli’s theorem,
2z 1 _ k (27 1 1
|, N (, T Jiw = | | "n(t o ) dwdt

r

The contribution to the latter integral from a single zero of H? on the
h a4t

real f-axis at 0 = a, Whereoga—h<a+h<2nisg S+ t'dxdt =
0

a—t

2 Shdt = 2h. Similarly it can be shown that if ¢« — 2 <0 or a + h =

2nf then the contribution to the integral is again 2h. The lemma
follows from the fact that the real zeros of HS are just the zeros
of Re (zf"(2)/f'(z) + 1) on |z| = r.

LEMMA 2.3. Let A be the constant and 4 the set in Lemma 1.5

corresponding to k(r) = —log (1 — ») and a, = &*. For L, as in (2.7)
we have for r¢ 4 and r > R,

L, < A[T(r), f) — log (1 — 7)] .
Proof. If r¢ 4 and r > R, then by Lemma 1.5
L= —S“log H:0)ldo = —| "log | F,(@)|dx
0 0

— _Y"‘log |Re (re*f" (re**)f'(re™)) + 1|da
< A[T(E(r), f) —log (1 —7)] .

LEMMA 2.4. For L, as in (2.7), we have for A = A(a) and for
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r>R
L, < A[T(c¢*r), f) —log (1 — m)] .

Proof. By Tonelli’s theorem we have
T I3 4
L, = 82 N(h, H?)dz = S Sz n(t, HAtdadt .
0 0 Jo

The contribution to L, from a pole of F,(4) at b, where |[Imb| < &,
is no more than

3 Re b+Vi2— (Im b)2 L
S (S A dx)t—ldt — S 21/ F = (Tm b)it-'dt
Re b—Yt2—(Im b)2

ITm b| ITm 5]

§2Shdt=2h.

The poles of F,(0) (see (2.1)) in {#: 0 < Ref < 27 and |Im 0| < h} arise
from zeros or poles of f'(z) in |z| < s. Thus, by Lemma 1.6, F.(0)
has no more than 2(n(s, f/) + n(s, 1/f") < A(a)X — »)'[T(c(r), f) —
log (1 — )] poles in the above region for » > R. Hence

L, < 2rA(0)1 — )7 [T(c(r), f) — log (1 — 7],

and the lemma follows since (1 — ) = (1 — «)/2.

LEMMA 2.5. For L, as in (2.7) we have for some constant A =
A(a) and for r > R

Ly < A[T((r), ) —log 1 — 7)] .

Proof. We have from (2.4) that

2.8) L,= 1 S S log | F,(x + he*)|dadp
21 Jo Jo
1 S27L‘S27r + 1 Szn , it
< 1 L\
==\ ), log 5 ), og | f'(se™)|

X

2rs((s* + %) cos (® + he™ — t) — 27s) dt{dxd;z
(72 + 8 — 2rscos (x + he* — 1))

+ 1 2w 8271' 10 +

27 S o 08

> K(r, d,, @ + he* — 7,)
d,<s

daxdp

+ 1 SZ: 821': 1 +
— 0
27 0 &

0

> Kd,r, 8%, © + heé* —,)

0<d,<s

dxdp + log 5

:E1+E2+Es+10g5;

where d,e'» is a zero or pole of f’.
We analyze terms E,, E, and E, separately.
Term E, Sinceh =1 — a)1 — 7)/2andlogsr™ > 1 — a)1 — 7)
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for » > R, we have for some we (1 — a)1l — 7)/2, (1 — a)(1 — 7)),
for p €0, 27) and for r > R,

2.9) @+ s9)@rs)™ — cos (x + he™* — 1)
= |cosh (log sr~") — cosh (k sin )|

> ‘cosh (@ — @)1 — 7)) — cosh (_;_(1 —a)l — y))]

— sinh w((l — )l —7) — _;_a — a1 — 'r))

-

> L1 — o) — 7 sinh ( L _wa-— T))

=N

= —=1-ad— r) (1 —a)l —1r) = —(1 o) (1 — r)>.

[\

Also, since r < s <1 and cosh (k) + sinh (h) = e" < 4, we have from
(2.5) that

[(s* + r¥) cos (x + he — &) — 2rs| £ 2(cosh (k) + sinh (h)) + 2 < 10 .

Thus, for constants A; = A;(a), j =1, 2, and for » > R, from (2.7)
and Lemma 1.6,

(210) B, < 2r(—A4,log (1 — r) + log* 2i
T

|, log | #/(se) at )

= 271:(—Al logd —r) + Iog+<T(s, I+ T<s, }1—,)»
< Ay(log T(c(s), f) — log (1 — 7)) .

Term FE;. Since 0 < d, < s we have (s* + d2r)@2d,rs)" = (s* +
79)(2rs)"'. As in (2.9) we have for » > R that the denominator of
|K(d,r, 8%, x + he* — v,)| (see (2.3)) divided by |2d,rs?| is
2.11) |(s* + dir?)(2d,rs®)™' — cos (x + he™* — v,)| > —}8—(1 — o)1 — 7r)t.

Also as above we have for » > R and d, # 0 that the numerator of
|K(d,r, s%, x + he'* — v,)| divided by [2d,r5%| is

(2.12) | (2d,rs?)~Y(d, rs* cos (x + he* — v,) — dir?)|

= %—ICOS (x + he* — v,) — d,rs™?|
1 . 1
= —2—(cosh (h) + sinh (h)) + )

z—;—(e"+1)<3.
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We conclude from (2.11) and (2.12) that for » > R
|K(d,r, s*, x + he?* — v,)| < Al@)A — )2,
and therefore from (2.8) and Lemma 1.6, for » > R

(2.13)  E, < 2zn(log (n(s, f) + n(s, 1/f")) + log (A(a)(1 — 7))
< A(a)[log T(c*(r), ) — log (1 — 7)] .
Term E,. We change the variables of integration in E, to u =
x4+ hecosp — v, and v = hsing. Since this transformation takes

{, : 0= <27, 0= p<2r} onto {(u,v):0=u=<2m, —h<=v=h}
exactly twice, it follows that

@.14) E =2 Shg (log+
T 0

S K(r, dy, u + ) >(h2 — ) dud .

We define
(2.15) ¢ = ¢&(r) = min {exp(—T(c*(r), f)), X — )%},
and

(2.16) D = D(e) = dU {(log (d, v — ¢, log (d, ") + €)
n<s
U (—log (d,r7") — ¢, —log (d,r™") + &)} .

We will evaluate the integral in (2.14) over values in [0, k] — D
and then over » values in D N[0, k]. We begin by obtaining a lower
bound for the denominator of |K(r, d,, v + v)| (see (2.8)). If »* +
d: — 2rd, cos (u, + v, = 0 for |v,| < h, then

r* + d2 — 2rd, cos (u + )
=r*+ d2 — 2rd, cos (u + ) — (** + d2 — 2rd, cos (u, + 1v,))
= —2rd,(cos (w + v) — cos (u, + v,))

— 4rd, sin (é w — u) + %(v — 'uo)> sin <—;—(u o) + ;_'(v + 'vo)) :
There is an absolute constant B so that |sinz|/|Imz| > B. Ifv¢ D,
then |v & v,] > ¢ and |sin (u = u)/2 + (v = v,)/2)| > B|v + v,| > Be.

Hence, for v¢ D, d,# 0 and » > R, the denominator of |K(r,d,,
% + i) is

[r* + d2 — 27d, cos (u + 1v)| > 4rd, B%*.

Also, since |v| = h and cos (u + iv) = cos u cosh v — 4 sin u sinh v, we
have that the numerator of |K(r, d,, w + iv)]| is

2.17) |7 — rd, cos (u + 1) =1 + cosh v + sinh [v]| < 4.
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h
Thus, since K(r, 0, u + ) = 1 and \ (h*—+*)"*dv = /2, we have for
dy=min{d, #0:k=1,2,38, ---}, and for »r > R

2.18) S 1 S” <1og+

f0,)]=p 27T Jo

dz K(’l", dn, U + ’Lv) , >(h2 - /1)2)"1/2dud/g
n<s

= Sj <log<n(s, fH+ n(s, %’>> — A(d,) log 8)(h2 — V)V

< Aa, do)(T(c(s), f) — log (1 — 7)) .

Furthermore, since S%iloglc —cost|t|dt < A for all real ¢, (2.17)
0
and a straight forward calculation yield that for all d, # 0,

Sznlog+ |K(r, d,, w + iv)|du

r* — rd, cos (u + 1v)
r* 4+ d% — 2rd, cos (u + iv)

2
= S log+
4]

< 87 + |log (2rd,)| + SZI log*|(»* 4+ d2)@rd,)™" — cos u|*du
< 87 + |log 2rd,)| + A = A(d,) .

Hence, using Lemma 1.6, for » > R

(2.19) Sz" log*
0

S Ker, d,, u + iv)'du

d,<s

< 2z log <n(8, f+ %<S, %))

+ 3 S log* | K(r, d,, u + iv)|du
< 2z log (n(s, )+ n(s, ]%» + A(d,) (n(s, fH+ n(s, %))

< Ala, do)@ — 7)7(T(e(s), f) — log (1 — 7)) .

The measure of D is no more than d = d(e) = 2(n(s, ) + n(s, 1/1"))e.
Also,

(B — v do < Sh (h* — v*) ™ dv = sin~" (1) — sin™' (1 — oh™)

SDﬂ[o,h] h—3

=T _
5 Y

where ¥y = sin~* (1 — 6k~Y). Since lim,_., (sin 7/2 — sin w)/(x/2 — w)* =
1/2, we have for »r > R

s 2<sin.’2£ — sin y>1/2 — 201 — (L — SR = (43h—")"" .
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Therefore,

(B — v)"dy < (40h~1)"2 = <8h“(n(s, 1)+ n(s, %»e)/

SD(‘[[O,h]

and from (2.19) and Lemma 1.6,

(2.20) S S (tog*| 3 K, ., u + iv),)(iﬁ — W) dudy
DALo,k] Jo dp<s

= Aa, d)1 — r)7(T(c(s), f) — log (1 — 7))
. , 1 1/2
< (51021 (s 1))
= Ala, d))(1 — 7)7%(T(c(s), f) — log (1 — 1))*%"* = o(1)

by the definition of ¢ (see (2.15)). From (2.14), (2.18) and (2.20) we
conclude that for » > R

(2.21) &y < Aa, [XT(e(s), [) — log 1 — 7).

Since s = ¢(r) it follows from (2.10), (2.13) and (2.21) that for
r > R and for some constant A = A(«, f)

L, < A(a, f)(T(c(r), f) —log (1 — 1)) .

Finally, we conclude from (2.7) and Lemmas 2.2, 2.3, 2.4 and
2.5 for r¢ 4, »r > R and for some constant A = A(q, f)

2hg(r, 2f"(@)/f'(2) + 1) < A(T(c*(7), f) — log (1 — 7)) .

Part (i) of the theorem now follows from Lemma 1.4 since h =
1 — a)d — 7)/2, and (r) = ¢,(7).

3. Proof of part (ii) of the theorem. We have obtained an
upper bound for ¢4(r, f) off an exceptional set of » values, but the
techniques used in §2 do not yield any upper bound for ¢(r, f) on
the exceptional set. In this section we obtain an upper bound for
#(r, f) on the exceptional set by bounding ¢(r, zf”/f’ + 1). This
upper bound for ¢(r, f) will yield, upon integration, the appropriate
bound for @(r, f).

We let ¢(») = 1 — v) + vr with v as in Lemma 1.2. By Lemma
1.2 we can write zf"(2)/f'(z) + 1 = g.(&)/9,(2) wWhere ¢, and g, are
holomorphic in the unit disk and for » > R

8.1) max (T(r, g), T(r, g,)) < Al — r)~*T(c(r), 2f"2/f'(z) + 1)
< AQ — r)(T(e(r), f) — log (1 — 7))

where p is a positive integer and we have used Lemma 1.6 and well
known properties of the characteristic function.
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We have Re (2"(2)/f"(2) +1)=Re (0,(2)9:(2))/19:(2)*. We let u;,,(0)=
Re g;(re’®) and v;,(6) = Im g;(re?®) for j =1, 2 and define J, by

(8.2) J,(0) = Re(g,(re”)gu(re”)) = |g.(re”) | Re ((re’f""(re)/[f'(re”)) + 1)
= Uy, (O)U,,,(0) + v,,,(0)v,,.(0) .

Now choose 7, > 0 so that (3.1), Lemma 3.3, (3.8) and (3.12) of this
section hold for » > »,. For v as in Lemma 1.2 let

(3.3) co(r) = A — ¥ + v and s, = c¥(r) .
We note that if we let s, = #, then ¢i() = ¢(r) and U3 [, St =

[7, D).

LEmMA 3.1. If rels,, 8,40, f(1e?) =0 for 0 <0 < 2x, and the
distance from |z| = r to the nearest zero of g,(z) is no less than nr,
where 7 < N, < 1, then there is a 6,€[0, 2n) such that

1og [,0)| > A(syrz — 8,00 (T(e(,1), f) — log (L — 8,1)) log 7 .

Proof. Applying Lemma 1.1 to g¢,(2)/|9.(0)| or g.(z)/c,z* for ap-
propriate k& and ¢, in |2| < s,.,, We obtain a union of disks C(s,, 1),
centered at the zeros of g, in 0 < {z| £ s,.,, the sum of whose radii
does not exceed 7s,:,, such that in {r, £ (2| = s} — C(s,, V)

(3.4) log[g:(2)| > A(Suss — 8440) T (Su1s, 9) log )
> Alsurs — 801 (T(e(8,50), f) — log (1 — 8,4 log 7 .

We let B(s,, ) = {r: f(re”?) € C(s,, 7) for some 0 < 4 < 2x}, and
(8.5) E(s,, M) = [8,, 8u+) N{B(s,, 1) U {r: f has a zero of modulus 7}} .

If rels,, s,..) — E(s,, ), then ¢,(z)/g,(2) has no poles (and hence f
has no zeros or poles) on |z| = ». Thus @w = f(re”), 0 L0 < 2r is a
closed path in the plane and by (1.1)

1 §2x|Re (re’f"(re?)[f'(re)) + 1|d6 = 1.
21 Jo

Consequently, there is a 6,€[0, 27) such that
[Re (re’f"(re®)[f'(re’)) + 1] = 1,
which together with (3.2) and (3.4) yields the lemma.
LeEmMMA 3.2. If rels,, s.+) and 6 is complex, then H,(0) is holo-

morphic in |Imb| < —logr and for [Im@| < log (c(8,+1)/8.+.) we have
for some positive integer p,
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[J,(0)] < (Surs — Snia) 2 €XP{A(Sy1s — 8,p5)~ P+
X [T(c(8nrs), f) — log X — s,4)]} -

Proof. If g9,(2) = >iv-o a,2” where a, = «, + 18,, @,, 8, real, then
let g¥(z) = Xn0la,|z". We note that by Lemma 4 of [10]

for 0 <r < R <1. Also, for real 4
(3.6) w,.,(0) = 3 (a, cos m — 3, sin nO)r" .
n=0

If we let 6 be complex, (3.6) implies that u,.(d) is holomorphic in
|Im 6| < —logr. If |Im@| < log (8,+:/8,+1) < —log 7, then

[0,,0)] = 2 310, (r exp(10g (sy50/8,4.)))" = 205 (5,1
= 2M(8,40y 97) < 2(8p45 — Sutn) M (S sy 91)
< 2(841s — S €XPL2(84rs — 8uts) T (8prsy 90)}
< 2(8p4s — Sp42) "2 €XP{A(Sp4e — Spia) P
X [T(e(8n+a), f) — log (1 — 8,401},

where p is a positive integer and we have used Lemma 1.2 and a
well known relationship between log*™ M(r, f) and T(r, f), see [4,
p. 18]. Identical statements can be made for v, ,.(6), u.,,(0) and v, ,(6)
and the lemma follows.

Now choose a positive integer g so that

% 108 (8y10/8011) < 7(20)™ < 10 (8,4/5002) »

which can always be done provided 7, is sufficiently large. If U, =
{0: 1Im 6| < ©(2¢9)~"}, then fi(z) = ¢* is a one-to-one transformation of
U, onto U, = {0+ 0: |]arg ]| < ©(2¢9)7"}, and f,(2) = 2? is a one-to-one
transformation of U, onto U, = {6 # 0: |arg 0| < w/2}. Also, fi(z) =
(2 — e%9)/(z + ¢’7) is a one-to-one transformation of U, onto the unit
disk, satisfying f,(e’?) = 0, where 6, is as in Lemma 3.1. If we let
L(z) = fi(fu(fi(z))), then L(z) is a one-to-one transformation of the
unit disk onto U,, satisfying L(0) = 4,. We let p(q) = (¢"? — 1)/(e™ + 1).
Elementary calculations show that L maps {{w| < p(¢)} onto a region
in U, containing the interval {4, — 7, 6, + 7] on the real f-axis. We
will use L to prove

LEmMA 3.3. If re|s,, su+1) — E(s,, 1), then
d(r, f) < exp{A(S,+2 — Sur) T (c(8040), f) — log (1 — 8,44)] log%
provided r > R.



IMAGINARY VALUES OF MEROMORPHIC FUNCTIONS IN THE DISK 239

Proof. We let n,t) be the number of zeros of J.(L(w)) in
|w| < t. Since J,(L(w)) is holomorphic in |w| < 1, we apply Jensen’s
theorem to J,.oL to obtain

@1 | n@eds = —log | 7,(LO)] + % || Tog 17.Ler dc

For t > p(q) we have
(3.8) |, 7 @0~ > n.(0(@) log (¢p(@))

We note that —log p(q) > exp(—=nq) for sufficiently large ¢, and ¢
will be large enough if s, (or, equivalently, 7,) is large enough. Also,
from the definition of ¢, we have exp(nq) < exp(A(S,+2 — Spr) ™).
This observation together with (3.7), (3.8), Lemma 3.1 and Lemma
3.2 yield, upon letting ¢ approach 1,

n,(0(q)) < [log ((p(g))~)]"* S n,(@)e-'ds

= [log (¢(p(@) )] {~log 11,600 + -

|, tog |, (L(te) ldc}

< OXP(A(Srs = 840) ) AGass — 500 T T(0(5,1), )

—log (1 — s,4,)] IOQ% - —;— log (8,45 — ?nﬂ)

+ Ay = 8,40 [ Tels,1), ) — log (1 — 5,11}

< XD (A(Syss — 8012) N T(e(8,032), F) — log (1 — 5,4,)] 1og% .

Since the zeros of J.(L(w)) in |w| < »(q) include the zeros of
Re (re?f"(re?)[f'(re”?) + 1) in the interval [8, — 7, 6, + «], the lemma
follows from Lemma 1.4.

Let A, be the constant in Lemma 3.3, and let 6, = exp(—3T(c(S,+4),
f) — 4A(Sprs — 8u40)7).  Define E = U5, E(s,, 0,), where s, and
E(s,, 0,) are defined by (3.3) and (3.5), respectively. Let 4’ be the
set in Lemma 1.5 corresponding to a, = v* and k() = BA — r)~* with
B a sufficiently large constant to be specified in (3.12) below. Finally,
let P, =[0,7], P.=4NE, and P,= (4 — E)N|[r,1). We will bound

SP_gs(t, AL —t'dt for j=1,23.

If D(n) = {r < 8,:,: ¢, has a zero of modulus 7}, and if », € D(n)
then by Lemma 3.3, for s, > R
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min (r{+d, 8,4

@9 |77, - v-at

< eXp{Ao(3n+2 - 3n+1)—1}<T(c(sn+4)9 f)—log (@ — s,44)
x g”“”(qog 1t — r)dt

r1—0y

< 2 €xXp {A0(3n+2_8n+1)_1}(T(C(sn+4)7 f)_IOg (1_Sn+4)>(3n_3n ]'Og 5%)
< exp{—2T(c(s,+s), ) — 2A4:(Sps> — S0s) 7} -

Since KE(s,, 0,) C U,cpwm * — 0y v + 0,) U {r: f has a zero of modulus
7}, and g, has no more than n(s,:, ¢.) zeros in [z| < s,.,, We have
from Lemma 1.6 and (3.9) for » > R

SE(s ,0 )¢(t’ HA —t)—de

< eXp{—zT(c(Sn+4); f) - 2A0(Sn+2 - Sn+1)_1}n(sn+29 g)
<1l-—s,=7"1—17) .

max (ry—d

Since E = Us-, E(s,, 0,), an elementary calculation shows
(3.10) S 62, )1 — O)=dt < oo .
Py

It follows from [10, paragraph after (2.16)] that

3.11) SP 6, )L — )t < oo .
If re(d — E)N|[s,, $4+1), then from Lemma 3.3, for », > R

(3.12) ¢(r, H(L — 7)™
<@ = )7 exp{Ay(Suie — Sut) HT(e(S1s), ) — log (1 — 8,44)]
X [8T(c(Sp+a), f) + 4Ax(Sut+e — 8p10)7']
< exp{2A4,(Sure — Sur) T} T(e(8014), f)
< exp{B — )7} T*c(cs(r)), f)
= exp{B(l — »)7}T*(*(r), 1)
< exp{T(c*(r), f) + BA — )"},

where B is a constant and we have used the fact that ci(r) = c(»).
Thus, by Lemma 1.5 we have

(3.13) SP 6, F)(L — )-dt < oo .

Finally, we note that the proof of part (i) of the theorem may be
altered using Lemma 1.5 with 4’ corresponding to k(») = B(1 — »)!
(B as in (3.12)) and a, = v* to yield that for r¢ 4 and » > R

(3.14) o(r, f) < AQ — »)7[T(E), £) + @ —n)7].
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From (3.10), (3.11), (3.18) and (3.14) we conclude for » > 7,

L8t ) — prae < | A0 — 91T, £) + @ = 9=1at + 0

< A[T((r), /) + A =) A =" —1) +0Q)
<A1 — )7 [T, )+ A —n7].

The proof of part (ii) of the theorem follows by letting a, = 2.

4. Examples. We first give an example to show that ¢(r, f)
may equal OQ), and that O(r, f) may equal O(—log (1 — 7)), for
Sunctions of arbitrarily large order. For x> 0, let

fz) = exp{(Q + 2)/A — 2))*},

where the branch is chosen so that f{(0) = e. Note that |[f(z)| =1
implies Re {((1 + 2)/(1 — 2))*} = 0. Since A + 2)/(1l — z) takes |z| =7
onto a circle in the right half plane, |arg (1 + 2)/(1 — 2))*| < m\/2.
Also, fork =0, 1, £2, ---, =[N/2], —[M2] —1, arg (1 + 2)/A —2))* =
(k +1/2)x if and only if arg (1 + 2)/(1 — 2)) = 1/nk + 1/2)x. For
each such k, the latter equality holds at most twice on |z2| = ». Thus,
|f(z)] =1 at no more than 4([»/2] + 1) < 2xn + 4 points on |z]| = 7.
If L(z) is a linear fractional transformation taking |z| = 1 onto the
imaginary axis, and if g¢g(z) = L(f(z)), then ¢(r,g9) <2\ + 4 and
O(r,9) = 2\ + 4)log (1 — 7). The order of g can be made arbitra-
rily large by choosing )\ sufficiently large.

Now we give an example to show that the factor (1 — )™ in (i)
and (ii) of the theorem cannot be replaced by any function b(r)
satisfying b(r) = o(l — 7)~*). We use the Lindelof functions. If ¢
is a positive integer and ¢ =\ = q + 1, then we let

fz,\) = lﬁl 1 — za;") exp {(za;l) + —;—(zazl)2 + .o+ %(za;l)q} ,

where a, = n¥*. It is known [11, p. 18] that f(z, ») has order » and
mean type 1. Thus, for ¢ > 0 and |z] > R(¢e), we have

(4.1) log | flz, M)] < (1 + &)|z]*.

We let g(z, A) = f(Q + 2)/(A — 2), ). Thus, for | + 2)/A — 2)| > E(e),
(4.1) implies

(4.2) log [9(z, M| < (1 + &) + /A — 2)|*.
Also, there is a constant K(e) so that, if |(1 + 2)/(1 — 2)| = R(¢), then
(4.3) log |g(z, M| < K(e) -

Since (1 + &)(|1 4+ re”?|/|1 — re?)* = (A + &)|1 + re” | (|1 — re?? )~ <
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(1 + ¢)2*(1 — 27 cos 6 + r*)~*?, we have from (4.2) and (4.3)

(4.4) m(r, g) = 1 S nlog+ | g(re®) |do
2r )=
2 T
<2 +e) (12 +€) S (L — 27 cos 6 + )-9df + K(s) .
T -7
By [2, p. 65], the latter integral in (4.4) equals O((1 — »)~“"). Thus
(4.5) T(r, g) = m(r, g9) = O(@A — »)~“-1) ,

Since the image of |z| < r under (1 + 2)/(1 — z) contains the interval
(A —»/Q+7r),d -+ 7)1 — r)] on the real §-axis, we have n(r, 1/g) =
1 — )% for » > R. By the argument principle, if f(z) =0 on
|z] = r and r < R, then

(4.6) o(r, 9) = 2(1L — 7)~*

From (4.5) and (4.6), it follows that if f(z) # 0 on |z| =+ and if
r > R,

A —-7r""T1—-pB) + Br,9) =0[A—r"A—((@Q—pB) + Br) "]
= 0800 = 1] = Agtr, 9)
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