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Let M be a projective algebraic manifold. Suppose
π: D->M is a covering of M. If D satisfies H^D, O*)=0,
then D is a Stein manifold with H2(D,Z)=0, where 0* is
the sheaf of germs of nowhere-vanishing holomorphic func-
tions and Z is the additive group of integers.

Let D be a domain in Cn and Γ be a discrete subgroup of
Aut(D). It is well-known that if the quotient manifold D/Γ is
compact, then D is a domain of holomorphy. Recently, Carlson-
Harvey [1] showed that if JD is a domain in a Stein manifold and
D —> M is a covering of a compact Moisheson manifold M, then Z>
is a Stein manifold. On the other hand, we showed in [4] that if
a pseudoconvex domain D in a projective algebraic manifold satisfies
H\D, 0*) = 0, then D is a Stein manifold with H\D, Z) = 0.

In this paper, we study the case where a covering of a mani-
fold is not contained in a larger manifold. We shall prove the
following:

THEOREM. Let M be a projective algebraic manifold. Suppose
π: Z> —> M is a covering of M. If D satisfies H\D, 0*) = 0, then
D is a Stein manifold with H2(D, Z) = 0.

We remark that the condition H\D, 0*) = 0 cannot be replaced
by H\D, 0) = 0, where 0 is the sheaf of germs of holomorphic
functions. To see this it is enough to consider the case D = M =
P2(C) and π is the identity mapping.

Proof of theorem. Let {Vt} be an open covering of M such
that each Vt is a local coordinate neighborhood and is biholomorphic
to a connected component π~\V^). Since M is a projective algebraic
manifold, there is a positive line bundle F over M. Choosing a
suitable refinement {U3) of {Vt}9 we can represent F by a system
of transition functions {fjk} and find a Harmitian metric {αy} along
the fibers of F which satisfies the following conditions:

( i ) Each aό is a C°°, real-valued and positive function on Ujf

(i i) If Uj Π Uk φ φ, then we have ak = \fjk\
2ajf

(iii) For every point P in M, the Hessian of — logα, relative
to a local coordinate system (zlf •••,«») at P
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is positive definite. By the compactness of M, M has a finite open
coverning {Uά: j = 1, , m}.

Since U5 is biholomorphic to each of the connected components
of π~\Uj)9 we have the functions {<ij°π} which satisfies the follow-
ing conditions:

( i ) Each aό°π is a C°°, real-valued and positive function on

(ii) If π-\Uj) Π π~\Uk) Φ φ, then we have as°π = \fjk°π\2ak°π,
(iii) W( — log a,j°π; P) is positive at every point P in D, where

W(φ; P): = m i n { Σ ^l—(P)χaχβ: Σ IK I2 = 1 , a,β=l, ;n\

and (wlf , wn) is a local coordinate at P.

Since U — {π'^Uj)} is an open covering of D, {fjk°π} defines an
element of H\U, 0*). By the assumption of H\D, 0*) = 0, there
is a cochain {/,-} of C°(U, 0*) such that fjkoπ = fk/fjm We can define
a C°° function φ on D in the following way:

for P in π~ι{Uό). Since ikf is paracompact, M has a finite open
covering {Wά: j = 1, , m} with W,-c E7,-. By the property (iii)
there is a positive constant Cά such that PΓ(̂ ; P) > C5 for P in
π-\Wj)(j = 1, , m). Hence we have

(1) T7(̂ ; P) > C: = min {Cy: i = 1, , m}

for P in D. We remark that D is not finitely sheeted, because D
has the strongly plurisubharmonic function φ.

On the other hand, M is a protective algebraic manifold, so D
has a real-analytic Kahler metric. Let d(P, Q) be the distance be-
tween P and Q measured by the Kahler metric. Let us fix a point
Po in D and define a continuous function ψ on Z> in the following
way:

α^(P): - d(P0, P)

for P in D. We see that for every c> 0, the set {Pe Z>: <ψ<P) < c}
is relatively compact in D. Denotes by Γ(P, ε) the set {Q e D:
d(P, Q) < ε}, where a positive constant ε is chosen so that π(Γ(P, ε))
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is contained in some Ud and Γ(P, ε) is homeomorphic to a hyper-
sphere. We define the following operator Aε mapping continuous
function f on D into C1 function on D:

AJ(P): = -± f(Q)dv ,
)

where dv is the volume element determined by the Kahler metric
and V is the volume of Γ(P, ε). We see that the set {P eD: Aεψ(P)<c}
is relatively compact in D. Let define

ψλ = Atψ and ψ2 = Aεψλ

on D, then ψ2 is C2 and the set {PeD:ψ2(P) < c} is also relatively
compact in D. Let compute the Hessian of ψ2. Since D has a
real-analytic Kahler metric, there are a local coordinate (wlf " ,wn)
of Γ(P, ε) and a positive constant Kx such that

I^(Q) - ^(Q')l2 ^ Xi{|wi - wίl2 + + \wn - <| 2 }

for two points Q = (wlf , w j and Q' = (w'lf , wi) in Γ(P, ε) (see
[3] Lemma 1). By the compactness of M9 Kx can be chosen inde-
pendent of P. Choosing Kλ large enough if necessary, we have

and consequently

for P in Z). Therefore a positive constant iΓ can be chosen so that

(2) W(ψ2;P)> -K

for P in D. Now we define a C2 function Φ on ΰ in the following
way:

Φ(P): - JΓ rtP) + C-

for P in JD. Then (1) and (2) induce

W(Φ; P) ^ ; P) + C ; P) > 0

for P in i). Hence Φ is a strongly plurisubharmonic function on D
and the set {PeD:Φ(P) < c} is relatively compact in D for every
c > 0. Therefore JD is a Stein manifold by Narasimhan [2]. More-
over from the exact sequence 0—>Z-»O-*O*—>0 we obtain the
exact cohomology sequence
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> H\D, 0) > H\D, 0*) > H\D, Z) • H\D, 0) >• - .

Since H\D, 0) = 0 by the Cartan's Theorem B and H\D9 O*) = 0
by the assumption, we have H\D, Z) = 0. This completes the proof.
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