Pacific Journal of Mathematics

COVERINGS OF A PROJECTIVE ALGEBRAIC MANIFOLD

KIYOSHI WATANABE

Vol. 96, No. 1

November 1981

COVERINGS OF A PROJECTIVE ALGEBRAIC MANIFOLD

KIYOSHI WATANABE

Let M be a projective algebraic manifold. Suppose $\pi: D \to M$ is a covering of M. If D satisfies $H^1(D, O^*)=0$, then D is a Stein manifold with $H^2(D, Z)=0$, where O^* is the sheaf of germs of nowhere-vanishing holomorphic functions and Z is the additive group of integers.

Let D be a domain in C^* and Γ be a discrete subgroup of Aut (D). It is well-known that if the quotient manifold D/Γ is compact, then D is a domain of holomorphy. Recently, Carlson-Harvey [1] showed that if D is a domain in a Stein manifold and $D \to M$ is a covering of a compact Moisheson manifold M, then Dis a Stein manifold. On the other hand, we showed in [4] that if a pseudoconvex domain D in a projective algebraic manifold satisfies $H^1(D, O^*) = 0$, then D is a Stein manifold with $H^2(D, Z) = 0$.

In this paper, we study the case where a covering of a manifold is not contained in a larger manifold. We shall prove the following:

THEOREM. Let M be a projective algebraic manifold. Suppose $\pi: D \to M$ is a covering of M. If D satisfies $H^1(D, O^*) = 0$, then D is a Stein manifold with $H^2(D, Z) = 0$.

We remark that the condition $H^1(D, O^*) = 0$ cannot be replaced by $H^1(D, O) = 0$, where O is the sheaf of germs of holomorphic functions. To see this it is enough to consider the case $D = M = P_{z}(C)$ and π is the identity mapping.

Proof of theorem. Let $\{V_i\}$ be an open covering of M such that each V_i is a local coordinate neighborhood and is biholomorphic to a connected component $\pi^{-1}(V_i)$. Since M is a projective algebraic manifold, there is a positive line bundle F over M. Choosing a suitable refinement $\{U_j\}$ of $\{V_i\}$, we can represent F by a system of transition functions $\{f_{jk}\}$ and find a Harmitian metric $\{a_j\}$ along the fibers of F which satisfies the following conditions:

(i) Each a_j is a C^{∞} , real-valued and positive function on U_j ,

(ii) If $U_j \cap U_k \neq \phi$, then we have $a_k = |f_{jk}|^2 a_j$,

(iii) For every point P in M, the Hessian of $-\log a_j$ relative to a local coordinate system (z_1, \dots, z_n) at P

$$L(-\log a_j; P) = \left(-rac{\partial^2 \log a_j}{\partial z_{lpha} \partial \overline{z}_{eta}}(P)
ight) \ (lpha, \ eta = 1, \ \cdots, \ n)$$

is positive definite. By the compactness of M, M has a finite open coverning $\{U_j: j = 1, \dots, m\}$.

Since U_j is biholomorphic to each of the connected components of $\pi^{-1}(U_j)$, we have the functions $\{a_j \circ \pi\}$ which satisfies the following conditions:

(i) Each $a_j \circ \pi$ is a C^{∞} , real-valued and positive function on $\pi^{-1}(U_j)$,

(ii) If $\pi^{-1}(U_j) \cap \pi^{-1}(U_k) \neq \phi$, then we have $a_j \circ \pi = |f_{jk} \circ \pi|^2 a_k \circ \pi$,

(iii) $W(-\log a_{j^{\circ}}\pi; P)$ is positive at every point P in D, where

$$W(\phi; P)$$
: = min $\left\{\sum_{lpha,eta} rac{\partial^2 \phi}{\partial w_lpha \partial ar w_eta} (P) \lambda_lpha ar \lambda_eta$: $\sum_lpha |\lambda_lpha|^2 = 1$, $lpha, eta = 1, \ \cdots, \ n
ight\}$

and (w_1, \dots, w_n) is a local coordinate at P.

Since $U = {\pi^{-1}(U_j)}$ is an open covering of D, ${f_{jk} \circ \pi}$ defines an element of $H^1(U, O^*)$. By the assumption of $H^1(D, O^*) = 0$, there is a cochain ${f_j}$ of $C^0(U, O^*)$ such that $f_{jk} \circ \pi = f_k/f_j$. We can define a C^{∞} function ϕ on D in the following way:

$$\phi(P): = -\log(a_j \circ \pi(P) | f_j(P) |^2)$$

for P in $\pi^{-1}(U_j)$. Since M is paracompact, M has a finite open covering $\{W_j: j = 1, \dots, m\}$ with $\overline{W}_j \subset U_j$. By the property (iii) there is a positive constant C_j such that $W(\phi; P) > C_j$ for P in $\pi^{-1}(W_j)(j = 1, \dots, m)$. Hence we have

(1)
$$W(\phi; P) > C: = \min \{C_j: j = 1, \dots, m\}$$

for P in D. We remark that D is not finitely sheeted, because D has the strongly plurisubharmonic function ϕ .

On the other hand, M is a projective algebraic manifold, so D has a real-analytic Kähler metric. Let d(P, Q) be the distance between P and Q measured by the Kähler metric. Let us fix a point P_0 in D and define a continuous function ψ on D in the following way:

$$\psi(P):=d(P_0,P)$$

for P in D. We see that for every c > 0, the set $\{P \in D: \psi(P) < c\}$ is relatively compact in D. Denotes by $\Gamma(P, \varepsilon)$ the set $\{Q \in D: d(P, Q) < \varepsilon\}$, where a positive constant ε is chosen so that $\pi(\Gamma(P, \varepsilon))$ is contained in some U_j and $\Gamma(P, \varepsilon)$ is homeomorphic to a hypersphere. We define the following operator A_{ε} mapping continuous function f on D into C^1 function on D:

$$A_{\scriptscriptstyle arepsilon} f(P) centcolor = rac{1}{V} {\int_{arepsilon_{\langle P, \, arepsilon
angle}}} f(Q) dv \; ,$$

where dv is the volume element determined by the Kähler metric and V is the volume of $\Gamma(P, \varepsilon)$. We see that the set $\{P \in D: A_{\varepsilon}\psi(P) < c\}$ is relatively compact in D. Let define

$$\psi_1 = A_{\varepsilon} \psi$$
 and $\psi_2 = A_{\varepsilon} \psi_1$

on *D*, then ψ_2 is C^2 and the set $\{P \in D: \psi_2(P) < c\}$ is also relatively compact in *D*. Let compute the Hessian of ψ_2 . Since *D* has a real-analytic Kähler metric, there are a local coordinate (w_1, \dots, w_n) of $\Gamma(P, \varepsilon)$ and a positive constant K_1 such that

$$|\psi(Q) - \psi(Q')|^2 \leq K_1 \{|w_1 - w_1'|^2 + \cdots + |w_n - w_n'|^2\}$$

for two points $Q = (w_1, \dots, w_n)$ and $Q' = (w'_1, \dots, w'_n)$ in $\Gamma(P, \varepsilon)$ (see [3] Lemma 1). By the compactness of M, K_1 can be chosen independent of P. Choosing K_1 large enough if necessary, we have

$$\left|rac{\partial \psi_1}{\partial w_j}(P)
ight| \leq K_1 \quad (j=1,\,\cdots,\,n)$$

and consequently

$$\left| rac{\partial^2 \psi_2}{\partial w_j \partial \bar{w}_k} (P)
ight| \leq K_1 \quad (j, \, k = 1, \, \cdots, \, n)$$

for P in D. Therefore a positive constant K can be chosen so that (2) $W(\psi_2; P) > -K$

for P in D. Now we define a C^2 function Φ on D in the following way:

$$arPert(P) := K \cdot \phi(P) + C \cdot \psi_2(P)$$

for P in D. Then (1) and (2) induce

$$W(\Phi; P) \ge K \cdot W(\phi; P) + C \cdot W(\psi_2; P) > 0$$

for P in D. Hence Φ is a strongly plurisubharmonic function on D and the set $\{P \in D: \Phi(P) < c\}$ is relatively compact in D for every c > 0. Therefore D is a Stein manifold by Narasimhan [2]. Moreover from the exact sequence $0 \rightarrow Z \rightarrow O \rightarrow O^* \rightarrow 0$ we obtain the exact cohomology sequence $\cdots \longrightarrow H^{1}(D, 0) \longrightarrow H^{1}(D, 0^{*}) \longrightarrow H^{2}(D, Z) \longrightarrow H^{2}(D, 0) \longrightarrow \cdots$

Since $H^2(D, O) = 0$ by the Cartan's Theorem B and $H^1(D, O^*) = 0$ by the assumption, we have $H^2(D, Z) = 0$. This completes the proof.

References

1. J. A. Carlson and R. Harvey, A remark on the universal cover of a Moishezon space, Duke Math. J., 43 (1976), 497-500.

2. R. Narasimhan, The Levi problem for complex spaces II, Math. Ann., 146 (1962), 195-216.

3. A. Takeuchi, Domaines pseudoconvexes sur les variétés köhlériennes, J. Math. Kyoto Univ., **6** (1967), 323-357.

4. K. Watanabe, Cousin domains in an algebraic surface, Mem. Fac. Sci. Kyushu Univ., **29** (1975), 355-359.

Received December 20, 1978.

Kobe University Nada, Kobe, 657 Japan

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, California 90024

HUGO ROSSI

University of Utah Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

R. FINN and J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of MathematicsVol. 96, No. 1November, 1981

Hédi Amara, Groupe des classes et unité fondamentale des extensions
quadratiques relatives à un corps quadratique imaginaire principal1
Douglas S. Bridges, On the isolation of zeroes of an analytic function 13
Andrew J. Casson and John L. Harer, Some homology lens spaces which
bound rational homology balls
Z. A. Chanturia, On the absolute convergence of Fourier series of the
classes $H^{\omega} \cap V[v]$
JF. Colombeau and Mário Carvalho Matos, On some spaces of entire
functions defined on infinite-dimensional spaces
Edwin Duda, Pointwise periodic homeomorphisms on chainable continua77
Richard F. Gustafson, A simple genus one knot with incompressible
spanning surfaces of arbitrarily high genus
Fumio Hiai, Masanori Ohya and Makoto Tsukada, Sufficiency, KMS
condition and relative entropy in von Neumann algebras
Ted Hurley, Intersections of terms of polycentral series of free groups and
free Lie algebras. II
Robert Edward Jamison, II, Partition numbers for trees and ordered sets115
R. D. Ketkar and N. Vanaja, A note on FR-perfect modules141
Michihiko Kikkawa, On Killing-Ricci forms of Lie triple algebras153
Jorge Lewowicz, Invariant manifolds for regular points
Richard W. Marsh, William H. Mills, Robert L. Ward, Howard Rumsey
and Lloyd Richard Welch, Round trinomials 175
Claude Schochet, Topological methods for C^* -algebras. I. Spectral
sequences
Yong Sian So, Polynomial near-fields?
Douglas Wayne Townsend, Imaginary values of meromorphic functions in
the disk
Kiyoshi Watanabe, Coverings of a projective algebraic manifold
Martin Michael Zuckerman, Choosing <i>l</i> -element subsets of <i>n</i> -element
sets