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We consider axioms that assert the possibility of choos-
ing a subset of an ^-element set. We study the inter-
dependence of these axioms and of the more usual axioms
of choice for ^-element sets.

The discussion takes place within any of the usual systems of
set theory without the axiom of choice. Our logical framework is
the first-order predicate calculus with identity. Lower case letters
stand for natural numbers. Throughout this paper, we let n ^ 2
and /"^l. At first, we assume n > s.

Let [n] be the statement: "For every nonempty set X of
^-element sets there is a function / with domain X such that for
each A in X, f(A) e A." Here, [n] is called the axiom of choice
for ^-element sets. (See [1].)

Let S(n, /) be the statement: "For every nonempty set X of
^-element sets there is a function / with domain X such that for
each A in X, f(A) is an ^-element subset of A."

Let Tin, /) be the statement: "For every nonempty set X of
^-element sets there is a function / with domain X such that for
each A in X, f(A) is a nonempty subset of A with at most /
elements."

Finally, let T*(w, n — 1) be the statement: "For every nonempty
set X of ^-element sets there is a function / with domain X such
that for each A in X, f(A) = (Alf A2), where Aλ and A2 are pairwise
disjoint nonempty subsets of A whose union is A.

Observe that T(n, n — 1) asserts the possibility of choosing a
nonempty proper subset of each ^-element set, whereas T*(n, n — 1)
asserts the possibility of ordering the partition thereby obtained.
Clearly, T(n, n - 1) <-> T*(w, n - 1).

The following relationships are also immediate.

T(n, 1) < > [n]

S(n,
Sin,

z
[2 -

)]-
-2]

> S(n, n -
—> S(n, n —

—• S(n, s)

> T{n, n

- s)

- i )

For convenience, for n^/, let S(n, s) = S(n, n — 1) and Tin, /) =
Tin, n-1).

Now let k, /, m, n be natural numbers such that k Ξ> 0, / ^ 1,
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m ^ 2, and n ^ 2.

If /<k, then clearly,

SO, •) > TO, •) > TO, A?) .

Theorem 1 generalizes the first of these relationships.

THEOREM 1. For / < n and n — s< m ^ n,

SO, /) > T(m, /) .

Proof. Let X be a nonempty set of m-element sets. For each
A in X, let A' consist of the first n — m natural numbers that are
not in A and let A" = A U Ar. We use SO, /) to obtain an ̂ -element
subset of A". At least one element of this subset belongs to A.

The next two theorems generalize Tarski's result:

[kn] • [n] .

(See [2], p. 99.)

THEOREM 2. For /< n and for k ^ 0,

(SO, /) A [kn + •]) > [Λ] .

Proof. Let X be a nonempty set of ^-element sets and let
A e X. We use SO, /) to choose an ^-element subset B of A.

If & = 0, we use [/] to pick an element of B.
If k > 0, we use [few + /] to pick an element of (B x {0}) U

(A x {1, 2, , &}). Let /(A) be the first coordinate of this chosen
element.

THEOREM 3. Let k ^ l .

(a) For /<n, T(kn, /) -+ TO, /).
(b) For / not of the form jn for any j ^ k, S(kn, /)-^T{n, /).

Proof. Let X be a nonempty set of ^-element sets and let
X' = {A x k: AeX}.

(a) We choose a subset of at most / elements of each A x k
in X'. For each such chosen subset, let B be the set of first
coordinates. Then B is a nonempty subset of A and has at most
/ elements.

(b) If / ^ kn, then

SQcn, /) < > S(kn, kn - 1) < > [kn]

and
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[kn] > [n] > T(n, /) .

If / < kn, we choose an /-element subset C of each A x k
in X'. Not every a in A appears the same number of times as
the first coordinate of a member of C. Let B be the set of
those a that appear the maximal number of times in this role. If
/ < n, B is nonempty and has at most / elements. If /> n, B is a
nonempty proper subset of A. In both cases, the axiom T(n, /) is
realized.

Henceforth, let A be a nonempty finite set of natural numbers
greater than 1. If A = {alf a2, , αm}, let S(A, /) denote

S(aly /) Λ S(a2, /) A Λ S(am, /) .

For n > /, we say that n is an A^-number if for some j ^ 1 and
some k satisfying 0 <* k < /, jn + ke A. Furthermore, for all n^2
and / ^ 1, we say that A and n satisfy condition J ^ if either

( i ) n is an ^-number, or both
(ii )a n = rp for some prime p in A, and
(ii )b whenever n = nλ + n2 for ^ > / and n2 > /, then either A

and wx or else A and w2 satisfy condition

LEMMA. Let p be a prime and let / ^ 1 and r ^ 1.

%>, ' ) > T(rp, rp - 1) .

lemma is Theorem 2{g) of [3]. See αίso [4].)

THEOREM 4. Lei A 6e as above, let n ^ 2 cmd / ^ 1, and
A and n satisfy condition J ^ . Γfcen S(A, /) -± T(n, / ) .

Proof. Assume A and n satisfy condition

If n is an A^-number, then for some j ^ 1 and for some k
satisfying 0 ^ k < /, S(jn + k, /) is true. By Theorem 1, T(jn, /)
must be true, and by Theorem 3, Tin, /) is true.

If n is not an A^-number, then n = rp for some prime p in A.
By our hypothesis, S(p, /) is true. By the lemma, T(n, n — 1) is
true.

If 2 ^ n ^ /, then Γ(n, n - 1) = Γ(n, /) .
If /<n<2/, we use Γ*(n, n - 1) to obtain (Blf B2), where

{!?!, .B2} forms a partition of an element B of a nonempty set of
n-element sets. At least one of these subsets, Bx or B2, has at
most / elements. We choose the first of these with this property.
Thus, T(nf /) is true.
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Now assume that for ri < n, whenever A and ri satisfy condi-
tion J ^ , then S(A, /) -» T(ri, /).

Let n ^ 2/ and suppose S(A, /) is true. We use T*(n, n — 1)
to obtain {Bu B2), as in the preceding paragraph. If one of the
subsets Bλ or B2 of B has at most / elements, then T(n9 /) is real-
ized. Otherwise, one of these subsets has nx elements, the other has
n — nγ elements, and both n > S and n — nγ > /. By (ii)b, either A
and n1 satisfy condition J^r or else A and n — nx satisfy condition
•J^. By the inductive hypothesis, either T(nl9 /) or T(n — nlf /) is
true. We can therefore choose a nonempty subset of at most /
elements of one of the subsets Bx or B2 of B. Thus, T(n, s) is true.

Let A be as above and let n ^ 2. Let P(A, w) be the statement:
"For every prime partition of n, that is, whenever n = p1 + p2-] hpk,
one of these primes is in A."

THEOREM 5. Assume P(A, n). Then for all /, S(A, s)->T(n, s).

Proof. It suffices to show that if P(A,ri), then for all /^ 1,
A and n satisfy condition j ^ .

Assume P(A9 n) and let / ^ 1.
If n is prime and ^ > /, then ^ is an A* -number. If n is

prime and n ^ /, then (ii)a and (ii)b of condition j ^ are satisfied.
Suppose that n is composite and that for all k, 2 ^ k < n,

whenever P(A, k)f then A and k satisfy condition A*. By P(A, ri),
each prime factor of n is in A. Let w = nx + 2̂> where nλ > / and
^2 > /. Suppose there is a prime partition of nx with no summand
in A. Then by P(A, ri), every prime partition of n2 has a summand
in A. Thus, P(A, n,) or P(A, w2). By the inductive hypothesis,
either A and nλ or else A and %2 satisfy condition j ^ . Therefore,
A and w satisfy condition j ^ .

Independence results concerning these axioms can be found in [3].
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