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In a recent paper, "The derivation algebra of a real division
algebra", we showed that if Der A is the derivation algebra of a
finite dimensional division algebra A over the reals, then

( i ) dim A = 1 or 2 implies Der A — 0,
(ii) dim A = 4 implies Der A is su(2) or dim Der A = 0 or 1,
(iii) dim A = 8 implies Der A is one of the following Lie

algebras:
(1) compact G2

(2) su(β)
( 3 ) su{2) © su(2)
( 4) su(2) 0 N where N is an abelian ideal and dim N — 0 or 1
( 5 ) N where N is abelian and dim N = 0, 1 or 2.

Moreover, any subalgebra of Der A is isomorphic to one of the Lie
algebras listed above.

For each Lie algebra L appearing in (i), (ii), and (iii) we also
exhibited a real division algebra having L as its derivation algebra
without proving that the derivation algebra was as asserted. One
of the goals of this present paper is to verify that these examples
have the derivation algebra claimed, but our main purpose is broader
than this. Using the representation theory of Lie algebras we
investigate those real division algebras A having L as its derivation
algebra for each of the nonzero Lie algebras L mentioned above.
The larger that L is, the more detailed is the information concern-
ing the structure of A. As one might expect, most of the classes
of division algebras are natural generalizations of the quaternions
and octonions. The principal exception is a family of division
algebras which includes the pseudo-octonions introduced by Okubo
in "Pseudo-quaternion and pseudo-octonion algebras."

l A review of some basic results on representations* Through-
out this paper we will assume that all algebras and modules are
finite dimensional. Let A be an algebra over a field F of char-
acteristic 0, and assume L is a semisimple subalgebra of the deri-
vation algebra Der A. Since A is an L-module, it decomposes into
irreducible summands: A— V± 0 0 Vn. Moreover, the product
of Vr x V8 into A followed by the projection onto Vt induces an
L-module homomorphism of Vr (g) V8 into Vt. Conversely, by taking
a sum of irreducible L-modules A — Vx 0 0 Vn and prescribing
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266 GEORGIA M. BENKART AND J. MARSHALL OSBORN

L-module homomorphisms from Vr (g) V8 into Vt for all r, s, t, one
achieves an algebra structure on A such that L £ Der A. In case
F is algebraically closed the dimension of HomL (Vr (x) Vs, Vt) can be
determined using

PROPOSITION 1.1. Let L be a semisimple Lie algebra over an
algebraically closed field of characteristic 0. Assume U is an L-
module and W is an irreducible L-module. If U — U10 0 Um

where the Ui are irreducible L-submodules, then dimHomL(£7, W)
equals the number of Ui isomorphic to W.

Since this is a standard result we give only a brief outline of
the proof. Using the uniqueness of the decomposition of U and
Schur's lemma, one can show that the homomorphisms πt (projection
of U onto Ui followed by an isomorphism onto W) form a basis for
HomL(£7, W).

In case U is an L-module over an arbitrary field F of character-
istic 0, we can take the algebraic closure K of F and form the
module Uκ = U®FK for Lκ = L®FK, and then apply Proposition
1.1 to Uκ. We examine the effect of this field extension on certain
submodules of £7.

Suppose U = Uι 0 0 Um is a decomposition of U into irre-
ducible L-submodules. Let Uo be the sum of all the trivial 1-dimen-
sional summands and U* be the sum of the others. Then U=Uoφ
U* and one readily verifies that:

Uo = {u e U\ lu = 0 for all I e L)

The submodules Z70 and U* behave nicely relative to field exten-
sions as the next lemma indicates.

LEMMA 1.2. ( i ) (U0)κ = (Uκ\

(ϋ) (Dr )r = (ϋz) .

Proof. From our alternate characterizations above, it follows
that (UO)KQ (Uκ)0={xe UK\lx = 0 for all leLκ}, and (U*)K=(LU)KQ
LKUK = {Ux)+. But since Uκ = (U0)κ 0 (17,)* £ (Ήr) θ (ϋ*) = ^
equality must hold in each case. •

In view of the above remarks, an equivalent formulation of
Lemma 1.2 (ii) is that the extension {LU)K equals the image of Uκ

under Lκ, which is LKUK.
We now turn our attention to the case that A is a real division
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algebra. According to the result stated in the introduction, the
only possible semisimple subalgebras of Der A are compact G2, su(3),
su(2) φ su(2), and sw(2). Each of these Lie algebras contains a
copy of su(2) so that if Der A contains a semisimple algebra, A
decomposes into irreducible s^(2)-modules. Irreducible sw(2)-modules
are most easily described by complexifying and regarding the result-
ing module as an s£(2)-module. Again the results we mention are
quite well-known ([4] or [6]), but our aim is to develop the back-
ground needed for later sections.

Let h — (Q _.I)> e — in Or a n ( * f ~ ( l o) ^ e *^ e s ^ a n ( ^ a r ( l basis
for sl(2) over the complex numbers C. Given any integer m ^ 0,
there is a unique irreducible si(2)-module V(m) having dimension
m + 1. We can choose a basis Zn, Zm_2> , Zm_2m — Z_m for V(m)
so that:

hZr = rZt

(1.3)
eZr = ΊHL T.Zr+2 where Zm+2 = 0

fZr = —ΐ—Zr_2 where Z_m_2 = 0 .
Δ

Now su(2) = {x 6 sZ(2) I »* = — a?}, and a basis for su(2) can be obtained
by taking d± = ih, d2 — e — f, and 33 = ie 4- £/. The effect of these
elements on the basis of Z's is given by:

r = ( m "3 2Z r ( > r + 2 (
(1.4) V 2 / V 2

33z r = ̂ ^—-—jZr+2 + ̂ ^—-—JZr_2 .

Let us consider the case that m=2n, and hence that dim V(m) =
2n + 1 is odd. In this situation we define:

Uq = Z2q + (~iγZ_2q for q = 0, , n

F, = ίZ2g - ( - l ) 9 ^_ 2 g for g = 1, - , n

Vo = Vn+1 = ?7%+1 - 0 .

The action of su{2) on the £/'s and V's can be readily computed
using (1.4) to show that for q — 1, , n:

= -2qUq
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d2Ug = (n - q)Uq+1 - (n

+1 - fa3 2 F g fa
W = fa
dsVq = - f a - q)Uq+1 - fa +

Thus, if we regard V(m) where m — 2n, as a real su(2)-module,
the t/'s and F's generate a s^(2)-submodule of dimension m + 1
over JB, call it W(m). It is not difficult to verify that W(m) is
irreducible and that V(m) = TΓ(m)φiW(m) as a real s^(2)-module.

The situation when m is odd is completely different. Here
V(m) is an irreducible su(2)-module over R.

Let us assume W is any irreducible sw(2)-module. Then Wc —
W®RC is an sZ(2)-module and as such, it decomposes into irreduc-
ible submodules of the type V(m). Now Wc as an s^(2)-module is
isomorphic to exactly two copies of W. Thus when we regard the
V(m) summands as real sw(2)-modules we must have a total of two
irreducible s%(2)-summands each isomorphic to W. When W has
dimension 2n + 1 this implies W is isomorphic to W(2n) and Wc ^
V(2n). If W has dimension An, then Wc ** V(2n - 1) 0 V(2n - 1)
and W ̂  V(2n — 1) when V(2n — 1) is regarded an su(2)-module.
There can be no irreducible su(2)-module of dimension 2(2n + 1), so
in fact, the smallest nontrivial su(2)-module is su(2) itself.

The Clebsch-Gordan formula provides the answer as to how the
tensor product of two irreducible sϊ(2)-modules decomposes:

(1.6) V(m) (x) V(n) = Vim + n) 0 0 V(\m - n\) .

Thus

dimHomsί(2)(F(m)(x) V(n), V(s))

1 i f s — m + nf m + n — 2, , |m — n\

0 otherwise.

Since for any real Lie algebra L and for any three L-modules
U, V, W, dimΛHomL (U® V, W)^dimcHomLc (JJC®VC9 Wc), the Clebsch-
Gordan formula determines a bound for dim^ Homs%(2) (U(S)V, W).

In addition to results on su(2) and s/(2)-modules we require
some facts concerning irreducible modules for sl(2) 0 sl(2), sl(3), and
G2. These facts can be established using arguments in ([4], Chapter
6) or ([6], Chapters 7 and 8).

Given a semisimple Lie algebra L over an algebraically closed
field of characteristic 0 with Cartan decomposition L = i ϊ 0 Σ«e ΦI/α,
there are certain linear functionals Xlf , λj on H, (the so called
fundamental weights) which span the dual £Γ* of H. The irredu-
cible L-modules are in one-to-one correspondence with the elements
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in H* of the form X = m ^ + + 7n{Kι where the m* are non-
negative integers. Following Humphreys we denote the irreducible
module corresponding to X as F(λ). (In this notation the sl(2)~
module V(m) would be V(mX^j). The dimension of the module V(X)
is given by WeyΓs formula ([4], p. 140), and the tensor product of
V(X) and F(λ') can be resolved into irreducibles using either Stein-
berg's formula ([4], p. 141) or calculations involving weights and
their multiplicities.

Real division algebras exist only in dimensions 1, 2, 4 and 8, and
as the result in the introduction indicates, the only time that su(2)(&
su(2), su(Z), and compact G2 occur in DerAis when dim A = 8.
Therefore when we decompose Ac into irreducible summands for
sl(2) 0 sl(2), sϊ(3)t or G2, the V(X) are constrained by dim V(X) ̂  8,
and the sum of the dimensions must total 8.

Since every sl(2) 0 sl(2) irreducible module is just the tensor
product of two irreducible sZ(2)-modules, one can handle these
modules using the above considerations.

For the Lie algebra sl(S) = A29 WeyΓs dimension formula reads:
dim F(miλi + w2λ2) = l/2(mι + l)(m2 + ^)(/mi + m2 + 2). Using this
expression one easily computes that the only modules of dimension
less than 8 are given by

(1.7)

V(0)

FOO

V(X2)

V(2X1)

V(2X2)

F(λi + λ2)

dimension

1

3

3

6

6

8

notation

1

3

3

6

6

8 .

We adopt the convention of denoting a module by its dimension,
and in the event of two or more of equal dimensions distinguish
them by a bar or star or both.

Consider now the tensor products of these modules. For any
irreducible F(λ), F(0) (x) V(X) = V(X). Of the remaining products
we list only those needed in the study of real division algebras.

3(x)3 = 6 + 3

3 ® 3 = 8 + 1

3"(x)3 = <3 + 3

(1.8) 6 <g> 6 - 15 + 15* + 6
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6(g)6 = Ϊ 5 + Ϊ5* + 6

8 ® 8 = 27+ 10+ 10 + 8 + 8 + 1 .

Here 15 = F(4λL), 15* - V(2\ + λ2), 15 = F(4λ2), Ϊ5* = F(λx + 2λ2),
27 = V(2\ + 2λ2), 10 - F(3λJ and Ϊ0 = F(3λ2).

The case 8 (g) 8 is noteworthy because the two 8-dimensional
summands imply there are two linearly independent s£(3)-homomor-
phisms of 8 ® 8 -^8. The 8-dimensional module is sί(3) itself under
the adjoint representation, and a basis of homomorphisms may be
concretely given by: x (x) y -»[xy] and x (g) y —• xy + yx — 2/3 tr(xy)I
where tr(xy) denotes the trace of xy.

The dimension formula for G2 modules is

dim F(λ)

((m1+l)(m2+l)(m1+m2 + 2)(rn1+2m2+3)(m1+3m2+4)(2m1+3m2+5) .
5!

Thus, there are only two modules of dimension less than or equal
to 8: the 1-dimensional module F(0), and the 7-dimensional module
F(λx). The resolution of 7 ® 7 into irreducibles is given by

(1.9) 7 ® 7 - F(2λx) 0 F(λ2) 0 F(λx) 0 F(0)

where these modules have dimensions 27, 14, 7, and 1 respectively.

2* The case Der A = compact G2* We are now ready to con-
sider individually the different possibilities for Der A, and to inves-
tivate for each one the division algebras A with that derivation
algebra. We take the possible derivation algebras in the order in
which they are listed at the beginning of this paper, starting with
the case when Der A is a compact form of G2. As we noted in
§ 1, there are only two irreducible (?2-modules of dimension 8 or
less over the complex numbers—one of dimension 1 and one of dimen-
sion 7. Thus, if A is a real division algebra with Der A = compact
(?2, the scalar extension Ac = A ®ΛC must be a sum of one 1-dimen-
sional module and one 7-dimensional module. (Note Ac could not be
a sum of eight 1-dimensional modules because Der A must act
faithfully on A.) Since the decomposition of Ac into irreducible
modules is necessarily a refinement of the decomposition of A, we
see that either A is a direct sum of a 1-dimensional module and an
irreducible 7-dimensional module, or else A is an irreducible 8-dimen-
sional module. But the last possibility can be ruled out by Lemma
1.2. Hence A = U + V where U is a 1-dimensional G2-module and
F is an irreducible 7-dimensional G2-module.

As was observed at the beginning of § 1, the homomorphisms



AN INVESTIGATION OF REAL DIVISION ALGEBRAS USING DERIVATIONS 271

from U®U, U®V, V®U, and V®V into U and V de-
termine the possible products between the summands. Since for
G2-modules over C, 1 (x) 1 = 1, l ( x ) 7 ^ 7 ^ 7 ( x ) l , and 7 (g) 7 ~ 27 +
14 + 7 + 1, it follows from Proposition 1.1 that there is at most
one homomorphism up to scalar multiple in each of the cases: Z7(x)
U->U, U®V-*V, V®U-+V, V&V-+V, and V® V-> U,
and only the zero homomorphism in the other cases. From this we
deduce first that U2 Q U. But since A is a division algebra, £72=£θ,
so it must be U2 — U. Thus, there exists an idempotent ue U.
Now u (X) v —» v and v ® u —> v define module homomorphisms from
Z7(g) V and V®U onto F. Therefore, left (right) multiplication
by u is just the identity transformation on V multiplied by the
scalar rj (ζ). To determine homomorphisms for F(g) V—> F, F ®
F—> U, we examine the best known example in the class we are
describing—the octonion algebra O. In O there is a basis u, elf , #7

with multiplication given by table (2.1) below with β — η — ζ = 1.
Here u spans a 1-dimensional module and elt , β7 a 7-dimensional
module for Der O = compact G2. Since the modules being discussed
are unique up to isomorphism, and since dim* Hom 2̂ (F (x) F, F) <Ξ 1
and dim* Hom^ (F (R) F, 17)^1, the products in the general case
are the same as in the octonions up to multiplication by a constant.
After replacing the basis elements of F by a fixed scalar multiple
of themselves, we may assume that the multiplication from VxV
to F is identical to that of the octonions, but that the products
from F x F to U involve the scalar β. To be specific, there is a
basis u, eu , e7 with multiplication given by

(2.1)

u

e
2

e%

e,

e
5

e
β

e
7

u

u

ζe
3

ζe
4

ζe
5

ζe
β

ζe
7

01

>?0i

-βu

- 0 4

- 0 7

02

-06

05

03

02

ηe
2

04

-05

-01

03

- 0 7

06

03

07

05

—βu

-06

-02

04

- 0 1

04

ηe,

-02

01

06

-βu

- 0 7

"03

05

05

%

06

-03

02

07

-βu

-01

- 0 4

06

-05

07

- 0 4

03

01

-βu

-02

07

?07

-03

-06

01

-05

04

02

—βu

The final thing that we wish to determine in this case is for
which values of β, η, ζ the algebra with the above table is a divi-
sion algebra. In particular, we shall establish

THEOREM 2.2. A real algebra A is a division algebra with the
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compact form of G2 as its derivation algebra if and only if A has
a basis u, elf , e7 with multiplication given by (2.1) for some real
numbers βy rjy ζ such that βf]Z > 0.

Proof. In view of our preceding discussion, it remains only to
show that the algebra A whose multiplication table is given by
(2.1) is a division algebra exactly when βηζ > 0. The condition for
A to be a division algebra is that the relation

(2.3) 0 = (aou + Σ aiei )(bou + Σ
\ <=1 / \ 1=1

can hold for real α's and 6's only if either all α's are zero or all
&'s are zero. As in the proof of ([1], Theorem 20), we multiply
out the right side of (2.3) and set the coefficients equal to zero. If
the δ's are regarded as variables in the resulting equations, the
coefficient matrix is

M,=

α0
βa>ι

7]a0

α4

a7

α2

α6

α5

- / S o ,
- α 4

ηa,

a5

αx

— α 3

a7

— βa3

-a7

- α 5

^α0

α6

α2

— α 4

- / 3 α 4

α2

- β i

- α β

^α0

αΓ

α3

— βa{

- α 6

α3

- α 2

- α 7

7]a0

αx

-a7

α, —

ζ α 7 - < α t — (

α,

α 4

α 2

ηa0 I
The statement that A is a division algebra is equivalent to the

condition that the determinant of M1 is nonzero unless all the α's
are zero. Since Ί] and ζ must be nonzero for A to be a division
algebra, we can replace each a0 with Ύ}~xaϋ and then multiply each
entry in the first column by ζ"1. If the resulting matrix is called
M2, then det Mt — 0 if and only if det M2 — 0. Now let us suppose
that the matrix M is the same matrix as M2 only with η~ι — ζ-1 =
β = 1. Since M corresponds to the octonion algebra, detikf^O
unless all at are 0. Thus det M2 = 0 if and only if det MZM* = 0.
But M2M

ι has no entries below the diagonal since the last 7 rows
of M2 and M are the same and are pair wise orthogonal. Hence,
the determinant of MZM* is the product of the diagonal elements.
The first diagonal entry is rj-ιζ-ιal + Σ βαί and the remaining entries
are α̂  + Σ<=i α< It is clear that if Ύj-ιζ~ι and β are both positive
or both negative, then the determinant of M2M* is not 0 unless all
the α's are, hence A is a division algebra. Conversely, if A is a
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division algebra, η^ζ^al + Σϊ=i βa\ ^ n ° t zero unless all the α's
vanish, which implies that Ύ]~ιζ~ι and β have the same sign. Thus,
A is a division algebra if and only if βηζ > 0. •

3* The case Der A = su(S) begun* In this section we inves-
tigate the case when A is an 8-dimensional irreducible s^(3)-module.
Then A is isomorphic to su(S) when it is regarded as an 8u(2)-
module under the adjoint representation. As we saw in § 1 there
are two independent homomorphisms from sl(S) (g) sl(Z) to sl(β), and
this is indeed true for su(S) as well. One of the homomorphisms
is obviously the Lie product, and to obtain the other we consider
$u(S) as 3 x 3 complex skew-Hermitian matrices (#* = — x) of trace
zero. For x and y in su(3), xy + yx — (2/S)tr(xy)I is a Hermitian
matrix, so multiplying it by i gives a skew-Hermitian matrix which
also has trace zero. Now for z also in su(3),

\z, i\xy + yx - — tr(xy)l\ = i{[zx]y + y[zx] + x[zy] + [zy]x}

ίr i , r i 2

= ι\[zx\y + y[zx\ - —

+ ijφ:?/] -
since tr([zx]y) = —tr([xz]y) = —tr(x[zy]). This calculation demon-
strates that the map x (x) y -> i{a?2/ + i/α? — (2/3)ίr(&ί/) 7} is indeed an
sw(3)-homomorphism. Our argument shows that for any real
8-dimensional algebra A on which su(S) acts irreducibly as deriva-
tions, the product in A is given by

(3.1) x*y = a[xy] + βilxy + yx —

In fact, 8w(3) is the entire derivation algebra whenever a Φ 0. For
if A~ denotes the algebra A under the product x*y — #*# = 2a[xy],
then every derivation of A is also a derivation of A~. But A~ is
isomorphic to su(3), which has only inner derivations (see [4] p. 23),
so Der A = su(3) in this instance. Our investigations of this case
will be complete, once we establish a criterion for such an algebra
to be a division algebra. To this purpose we prove

THEOREM 3.2. Let A be an S-dimensional real algebra defined
on the vector space su(Z) with multiplication given by (3.1). Then
A is a division algebra if and only if aβ Φ 0. For such a division
algebra, Der A — su(S) and A is an irreducible su(2>)-module. Con-
versely any real division algebra on which su(?>) acts irreducibly
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as derivations is given by this construction.

It is easy to see the necessity of the condition aβ Φ 0 to have
a division algebra since any element squares to zero if β = 0, and
since the product of ien — ie22 with e12 — e21 is zero if a = 0. To
establish the sufficiency of the condition we need the following
results.

Let x be a skew-Hermitian complex matrix. Then there is a
unitary matrix u such that u~ιxu = v where v is diagonal (see for
instance, Herstein [3] p. 302, Theorem 6.Z2). Since v is skew-
Hermitian also, it follows that all the characteristic roots of v,
hence of x, are purely imaginary.

LEMMA 3.3. Let x and y belong to su(Z), and assume 7, δ e C
are such that δ Φ ± 7. // jxy + δyx = Xl for some XeC, then x
or y is 0.

Proof. Let u be a unitary matrix which diagonalizes x as
above. Then ^{u~ιxu)^u~ιyu) + δiu^xu^u^yu) = Xl. Hence we may
assume without loss of generality that x is diagonal, say x =
diag {al9 α2, α3}. If y — (6^ ), then the equation jxy + δyx — Xl gives
for ί Φ j:

(7α4 + δajbv = 0 .

Since y is skew-Hermitian, b5i = — biά. Thus, for each pair i, j with
i ^ j9 we obtain the system of equations:

(7α, + 5^)6^ - 0 ,

(yd + δat)biS = 0 .

If some bij Φ 0 for i Φ j, then since y2 — δ2 Φ 0, we have α^α^—0.
However, x has trace 0, so it follows that aλ — α2 = α3 = 0 in this
case, and x — 0. We may assume then that ?/ is diagonal, say y =
diag {&!, 62, δ3}. Equating entries in 7 ^ + δj/aj = Xl gives

(3.5) α^! = a2b2 = α3δ3 = (7 + δ)-^ .

Using the fact that x and ?/ have trace 0, we obtain

(3.6) axbλ — a2b2 = ( — ax — a2)( — b1 — b2)

which simplifies to show:

(3.7) axbx - a2b2 = 0, a.φ, + 62) + a2bλ = 0 .
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If not both ax and α2 are zero then

(3.8) 0 -

If b2 — 0, then bλ — 0 and y = 0 as well. So we may assume b2φ0.
Then it is apparent from (3.8) that bfiϊ1 satisfies the equation z2 +
z + 1. Hence bjbϊ1 = ω, a complex cube root of 1. But then (3.5)
implies α2 = aλω and α3 = —aι — a2— — αx(l + α>) = α^ 2 . If αx = αi
for aeR, then a2 = (α/2)i±i/(3/2)α which contradicts the fact that
all roots of x are purely imaginary unless a — 0. But then a? = 0
as desired. •

Proof of Theorem 3.2. It remains to show that if aβ Φ 0 then
A is a division algebra. Suppose x and y are complex skew-
Hermitian 3 x 3 matrices of trace zero with the property that

0 = χ*y = a[xy] + βi\xy + yx — —tr(xy)l\

o

= (α + βi)xy + (—α + £i)i/& — —βitr(xy)I.
3

Letting 7 = a + βi and d = — α + /Si, we have 7 + 5 — 2^^ ^ 0 and
7 — δ = 2α =7̂  0. Since the hypotheses of Lemma 3.3 are satisfied,
we are forced to conclude that x = 0 or y — 0, and hence that A is
a division algebra. •

Those special cases in which β = ±i/3α have been studied
recently by Okubo [8], and have been shown to have many interest-
ing properties. For example these algebras have a quadratic form
permitting composition. They are not composition algebras in the
usual sense since they do not have an identity element.

It turns out that the two algebras studied by Okubo are the
only ones in the class defined by Theorem 3.2 which have a quad-
ratic form permitting composition. However, we can show that
every algebra A described by Theorem 3.2 is flexible. For this we
take x9 y skew-Hermitian matrices of trace 0, we let Xx>y = (2/3)tr(xy)
and use (3.1) to calculate that

(x*y)*x — x*(y*x)

= (oc[xy]+βi{xy + yx—XXtyI})*x—x* (a[yx] + βi{xy + yx—Xx,yI})

= a\[[xy]x] — [#[?/#]]) + aβi([xy]x + x[xy] — λ[x2/]>ίC/ — x[yx]

- [yx]x + λβl[jB1f]/ + [xy + yx, x] - [x, xy + yx])
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— β\xyx + yx2 + x2y + xyx — 2xx>yx — Xxy+yx,J — x2y — 2xyx

- yx2 + 2xx,yx + xX)Xy+yxI)

= aβi(2[xy]x + 2x[xy] + 2[xy + yx, x]) = 0 .

It is also clear from (3.1) that A is Lie admissible, since A~~su(Z).

4* The case Der A = s%(3) concluded* Having dealt with the
situation when A is a single irreducible sw(3)-module, we turn to
the case when A is a sum of at least two irreducible sw(3)-modules.
The only irreducible s£(3)-modules of dimension less than 8 are the
ones which in the notation of (1.7) are given by 1, 3, 3, 6 and 6.
Thus Ac must be a sum of modules of these types which add up
to give dim Ac = 8. We consider the various possibilities.

First, if Ac consists of a sum of Γs and 3's, then the relation
3 (x) 3 = 6 + 3 in (1.8) shows that the product of any two elements in
the 3-summand(s) must be zero. However, by Lemma 1.2 the com-
plexiίication of the image (su(Z)A)c equals sί(3)Ac which is the sum
of copies of 3. Thus, the product of any two elements in su(Z)A
would be zero and would contradict the fact that A is a division
algebra. This demonstrates that Ac cannot consist solely of Γs and
3's. Similarly we can rule out each case where in addition to Γs
there is exactly one of the types 3, 6, or 6 occurring in Ac by
using the relations 3 (g> 3 = 6 + 3, 6 (x) 6 = 15 + 15* + 6, and 6 <g) 6 =
15 + 15* + 6 from (1.8).

Thus, there must be at least two of the types 3, 3, 6, 6 present
in Ac, and this implies Ac = 1 + 1 + 3 +3. Looking again at su(3)A
and sl(8)Ac, we see that A is the sum of two 1-dimensional modules
and either two nonisomorphic 3-dimensional irreducible sw(3)-modules
or one irreducible 6-dimensional module. In the former case let us
suppose W, W are the two 3-dimensional modules such that Wc = 3
and Wc = 3, and U and V are the 1-dimensional modules. Then
the relations 3 ® 1 = 3, 3 ® 3 = 6 + 3, and 3 <g) 3 = 8 + 1 show that
for each weW, wA Q Rw + U + V + W. Hence, left multiplica-
tion by w is not onto, and this case cannot happen if A is a divi-
sion algebra. Thus A is the direct sum of two 1-dimensional
modules and an irreducible 6-dimensional module Z. Moreover we
have the following

THEOREM 4.1. If A is a real division algebra such that
Der A = su(S) and A is not an irreducible su(S)-module, then A has
a basis u, v9 zίf , z6 with multiplication table given by (4.2).
Conversely an algebra A defined by (4.2) admits su(3) as derivations.
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Proof. We have already determined that such an algebra is
the sum of two 1-dimensional sw(3)-modules and an irreducible 6-
dimensional module. In order to deduce the various products
between the summands let us first consider a well-known example
in which this type of decomposition occurs—namely the octonions.
Let O be an octonion algebra with basis u, elf , e7 and multipli-
cation given by (2.1) with β=zζ=η = l. Let L = {3eDer O\d(e7) = 0}.
Then L is isomorphic to su(Z). (See for example, [2], [5], or [7].)
One can actually verify this assertion directly in the following
manner. Let us complexify O and obtain a basis for Oc by taking:

u0 = — ( u + ie7) u* = — ( u — ie7)
Δ Δ

ux = —(e, + ΐβ8) vί = —{e1 - ie3)
Δ Δ

^2 = — (β2 + ie6) uξ = — (e2 — ieδ)
Δ Δ

Us = —(e4 + ie6) ut = —(e4 - ieδ) .
Δ Δ

Products between these elements can be calculated using (2.1). We
list the results below where we adopt the convention that ejH = 1
if (jkl) is an even permutation of {1, 2, 3}, εjkl = —1 if the permuta-
tion is odd, and εjH = 0 if (jkl) is not a permutation of {1, 2, 3},
and djk is the Kronecker delta.

U0Uj

uouf

ul —

— Uj

= 0

nQ

Uj

UoUj

UoUf

uQut

'u>* = %

- 0

= uf

= 0 =Wo*'

W'fc

UjU0 =

ufu0 =

(Uo*)2 =

0
w*

uf

lo*

UjUo

Wj VVQ

— w

= 0

Now 3 e L implies 3(u0) = 0 = 3(u0*). Moreover if X denotes the
span of the u'& and Y the span of the tc*'s, then X = {α? 6 Oc \ uox =
x = xuo} and Y — {yeθc\u^y = y = yu0}. It is easy to see from
these characterizations that X and Y are Lc invariant. From apply-
ing 3 to the relation uάuk — —δjku0, it follows that for each deLc

the matrix of 9 on Y relative to the uf is minus the transpose of
the matrix of d on X relative to the uό. In addition the trace of
d on X and on Y must be 0. These are the only restrictions on
the elements of Lc. Thus Lc = s£(3), and X is the module which
we have been denoting by 3 (it is 3 x 1 matrices on which s£(3)
acts by matrix multiplication), and Y is 3 (it is 1 x 3 matrices on
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which the action of s£(3) is right multiplication by minus the
matrix). From these observations it follows that if Z denotes the
span of eu , eQ in O, then L leaves Z invariant, while our previous
remarks show that Z must be an irreducible module for su(S).

Let us consider the L-module homomorphisms of Z 0 Z into Z.
Since Zc = X + Y, and since 3 (x) 3 = 6 +3, 3 (x) 3 = 6 + 3 and 3<g)3 =
8 + 1 we see dimc HomZc ((X + Y) (x) (X + Y), X + Y) - 2. It is
spanned by the homomorphisms φu φ2 where φγ(uό ® uk) — sjklu*,
φ2(u* (x) u*) = ejklulf and φx and <p2 are 0 on all products of basis
elements not of the specified type.

Given φe'RomL{Z0 Z, Z), then ψ lifts to an Lc-homomorphism
of (X + Y) (x) (X + Γ) into X + Γ, and so 9 = αφx + bφ2 where
a,beC. Therefore <£>((% + u*) (x) (% + u*)) = ejH(au* + 6%ι). But
since u3- + ^ and uk + w* lie in Z, so does αuf + bnu and α%* +
but = a(uι + %*) + βίO? — %) where a, βeR. Thus α = α + βi,
b = a — βί and 6 = ά. It follows that

O ® ΐ(w? - uk)) = 6yfc

(%* - ^, ) (x) (Wfc + ut)) = eik

- %) (8) i(%* - uk)) = ε,

These equations determine the effect of φ on the er (x) es basis of

Since the modules involved are unique up to isomorphism, the
general case of an irreducible 6-dimensional sw(3)-module Z which
becomes 3 + 3 upon complexification is no different from the behavior
just observed. There is a basis eu •••, e6 of Z such that any su(3)~
module homomorphism φ is given as above for some a, βeR. If
Z is a summand in an algebra A which admits su(3) as derivations,
then these homomorphisms determine the possible products from
Z x Z to Z, and since the homomorphisms are all skew-symmetric,
the products will be anticommutative.

Thus we may assume that the products from Z x Z to Z are
given by (4.3) for some a, βeR.

(4.3) es

β l

aβ2+βe

ββ2—ote

—βe^+oce

e2 ed

) —ββ4.~\~θL05

3 —(XΘi — ββs βθ2 — &βQ

5 —βei+aez —ae2—βeβ

- aet+βe,

β4

-ae2-βe6

—

βei-aes

βδ β 6

— β&2 + ^ β β ββ& — (XCs

β&x—oc&z —

Oί&\ -f- β&z

-aeί-βes -
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If ui9 uf are as defined above using the e's, then uάuk = εjH a u*
and ufu* = εόHauι where α = a + /3i. Let us suppose vs —
α" 2 / 3 α 1 / 3 % and vf = a~mamuf so t h a t vsvk = εjkιv* and v*v* — eίkιVt.

Now let z1 = v1 + v?, z2 = v2 + vt, z± = vz + v*9 z% = i(v* — v^9 £6 =

ί(^2* — v2), #5 = i(v* — v3). Then the multiplication table for the z's
is the same as (4.3) when a = 1 and /5 = 0. Note zx — ryeι + ζβ3, #2 —
7β2 + ζeδ, z, = ye, + ζe5, zz = -ζex + γe3, 2;6 = -ζe 2 + ye6, z5 = -ζβ 4 + 7β5

where 7 = l/2(α-2^3α-1/3 + α-2/3α-1/3) and ζ = (l/2)ΐ(α-2/3cT1/3 - ά-2/3α-1/3).
Since 7 = 7 and ζ = ζ, the z's lie in Z, and they are the desired
basis.

To calculate further entries in the (4.2) table let us recall
that 3 ® 3 = 8 + l. (This resolution can be concretely realized by
the matrix multiplication of a 3 x 1 matrix with a 1 x 3 matrix
followed by projection onto sl(3) and C-I). Thus, Vj(&v* -+δShw is
an sί(3)-module homomorphism of 3(x)3 onto the 1-dimensional
module spanned by w, and any other one is just a complex multiple
of this homomorphism. From this it follows that any sw(3)-module
homomorphism ψt: Z x Z-^Rw when lifted to (3 + 3) (g) (3 + 3) ->
Cw i s g i v e n b y ψ^Vj(x) v*) = cδikw, ψ^v* 0 vd) = dδjkw f o r c, deC

and the condition ψλ(Z ® Z) £ Rw forces d = c. Thus if c — ^

ψi((Vs + vf) 0 (% + O ) = 2δdka1w

Ψi((v3 + t;*) (x) i(%* - vfc)) = 2δάkβλw

ψMvf - vs) ® {vt + vfc)) = -Zδjφw

— Vj) ® i(v* — vk)) = 2δjkaxw .

Similarly if iίcc is the other 1-dimensional summand any homomor-
phism ψ2 is prescribed by scalars a2, β2. Thus any product oί ZxZ
into the two 1-dimensional summands is determined by four scalars
^1, βi, ^2, /32 6 JS. This number can be reduced by making the change
of basis u = —2axw — 2a2x, v — 2β1w + 2β2x. For t h e n z) = —n

for all j and zxzz — z2zQ = zAz5 — v = —zzzx — —zQz2 — —z*>z± as in t h e

table. The elements u, v will seem less mysterious if one keeps
the octonion example in mind, for there v corresponds to e7 and u
to the identity element.

The relations 1 0 3 = 3, l(x)3 = 3 similarly imply the existence
of scalars σly σ2eR such that

+ vf) = σt(vs + vf) + σ2i(vf - v5)

ui(v* — vs) = —σ2{vά + vf) + axi(vf — vά) .

In this fashion one obtains the entries in the table involving the
σ's and τ's. Since Ru + Bv is a subalgebra, the products u2, uv,
vu, v2 are of the form indicated by (4.2), and the determination of
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the table is complete. This table has been constructed by using
s^(3)-modules and sw(3)-module homomorphisms at each stage, so
that any algebra having (4.2) as its table for σ's, τ's, η's, θ's in R
will admit su(3) as derivations. •

If A is a division algebra with multiplication given by (4.2)
and if Der A is larger than su(S), then Der A is a compact G2, since
this is the only Lie algebra in our classification of derivation algebras
of real division algebras which can properly contain su(β). The
criterion for when Der A is a compact G2 is given in

THEOREM 4.4. If A is a real division algebra with multiplica-
tion given by (4.2), then Der A is a compact form of G2 if and only
if the following relations hold:

ΛI KN % = 0 = %, 0X = 0 = 0 4 , θ2 = σlf θz = τ19

( 4 . 5 )
% = — 1 = r 4 , σ2 = 0 = τ2, σ3 = 0 = τ 3 , <74 = 1 .

Otherwise Der A = su(β).

Proof. If the relations (4.5) hold, then it is immediate that A
is isomorphic to the algebra defined by (2.1) with ζ=^Γ1^Ί, V ==ί?Γ10Ί>
and β — Ύ]γ under the correspondence u <-• ^Γ1^, e7 «-> #, and ^ •-»• ^
for i = 1, , 6. Hence Der A is a compact G2 in this case.

Conversely suppose Der A is a compact form of G2. Then A
decomposes relative to Der A into a 1-dimensional module U and a
7-dimensional irreducible module F a s in § 2. Since Z is the image
of A under su(S) £ Der A, Z must be contained in V, the image of
A under Der A. Every element of V is known to square to an
element in U (see Table 2.1), but every element of Z squares to an
multiple of u. Thus U is the span of u, and V is the span of the
z's and v + Xu for some xeR. It follows that right or left multi-
plication by u on V, and also on U, must be a scalar multiple of
the identity transformation, and this implies that 0*2 = 0! = τ2, θx —
0, θ2 = σl9 and θz = τx. Since A is a division algebra, left or right
multiplication by a nonzero linear combination of u and v on zt must
be nonzero, and this forces <?4 Φ 0 and τ4 ^ 0.

We deduce further relations by recalling that products from
V x V ~> V are the same as in the octonions. Thus, they share
the property that if x, y and yx are in V, then (yx)x e Ry and
y(yx) e Rx, since these properties follow from the alternativity of
the octonions. (See for example, Schafer [9].) Such elements are
v + xu, zλ and (v + Xu)zx — (σ3 + Xσ^)z1 + σ±zzy so that

(4.6) ((v + Xujz^ = ~(σ3 + λcΓ^u — σ ^ e R(v +
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(v + Xu)((v

Since σ4 Φ 0, equation (4.7) implies that σz + λ0Ί = 0, and this
together with (4.6) says — σ4veR(v + Xu). Hence λ = 0, σ3 — 0, and
an analogous argument with zfav) determines that τ3 = 0. Further
consequences of the result that ve V are η2 = 0 = % and 04 = 0,
because x2e U for each x e 7 .

An additional property of F inherited from the octonions is
that if ye V and if for some xeV,xyeV and (xy)y = — <0#, for
peR, then for any weV with wyeV,(wy)y = — pw. Therefore,
fezi)^ = — z2 and (v^)^ = —σ4v imply σ4 = 1, while by symmetry
Zι{zxZo) = —z2 and z^v) = τ4t; give r4 = — 1.

All that is left to be shown is that 7]± = —1. However if a?, 2/,
and xy are in F, and (xy)y = — x and x(xy) — —y then ίc2 = y2, since
the corresponding result holds for the octonions. But then, (vzί)z1=
— v and vtyzj = —z1 imply —u = zl = v2 = Ύ)±u. From this we deduce
that y]i~— 1, so that all the conditions in (4.5) do indeed hold when
Der A = compact G2. •

The question of when a real algebra with multiplication given
by (4.2) is a division algebra is formidable because of the large
number of scalars in the multiplication table. However, we can
exhibit division algebras of this type which have su(S) as their full
derivation algebra. The easiest example is obtained by taking the
values of the constants prescribed in (4.5) with the sole exception
that 7]± is some negative number besides — 1. This algebra was
shown to be a division algebra in ([1], Theorem 20), and it has su(Z)
as its derivation algebra according to Theorem 4.4.

5. The case Der A = su(2) 0 8u(2). An irreducible sl(2) 0 βZ(2)-
module over C is just the tensor product of two irreducible sl(2)-
modules (one for each summand of sϊ(2)0sϊ(2)). If Vλ is an irreducible
module for the first copy of sl(2)f and V2 for the second copy, and if
dim V1 = m and dim V2 = n, then V1®V2 is an irreducible module for
sl(2) 0 sl(2) of dimension mn, and we denote this module by m®n.

Suppose now su(2) 0 su(2) £ Der A where A is a real division
algebra, and for convenience write St and S2 for the two copies of
8u(2). As we explained in § 1, we have the ^-module decomposition
4 = 4 0 φ 4 where AQ is the space of elements annihilated by Sx

and A* is the image of A under Sx. Since S1 and S2 commute, it is
easy to see that Ao and A* are invariant under S2. The S2-action
on AQ and A* affords the decompositions, Ao = Aoo 0 Ao* and A* =
A*o 0 A**. Thus, relative to S, 0 S2
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A — A Ά A £D> A ffi A

Since the smallest nontrivial su(2)-module has dimension 3, we
see Ao* — 0 or dim Ao* ^ 3, and the same is true of A*o. Because
(A**)c is just the sum of all irreducible sl(2) 0 sZ(2)-modules not
annihilated by either summand, it follows that either A** = 0 or
else dim A** ^ 4. We consider the various possibilities.

Of course, not all A*o, Aθ5i<, A** can be zero, since S1(£)S2 acts
nontrivially on A. If Ao* Φ 0 Φ A*o, then a simple dimension count
shows A** = 0. Since (m (g) 1) (x) (1 (g) n) = m(§)n for sZ(2) 0 sί(2)-
modules, A^QAQ^ £ (A*o)c(AOi|<)c £ (A^Jc = 0. This contradiction en-
ables us to conclude either A*o = 0 or Λo+ = 0. Without loss of
generality we suppose that A0Hί = 0, and hence A ^ i o o φ A ^ φ A ^ .
In this decomposition A** Φ 0, since otherwise S2 would act trivially
on A. Now (Am)c is comprised of a sum of modules of the follow-
ing types: 2 (g) 2, 2 (g) 3, 3 (g) 2, 2 (g) 4, 4 (g) 2. In any event, (A^)c is
the direct sum of copies of modules of dimension 2 when it is
decomposed relative to one of the copies of sl(2). Since 2(x)2 = 3 + l
for sί(2)-modules it must be that (A**)2

C £ (A00)c + (A^c, and hence
A%* £ Aoo + A*o. For any α? Φ 0 in A ,̂,, ^A,,,, £ Aoo + A ô, and be-
cause left multiplication by x is nonsingular, dim A^^g
Thus, there is only one possibility for (A+Hs)c, namely

If dim Aoo = 0, then dim A*o — dim A** = 4 and (Ac)*,, = 2
relative to (SJc = sl(2). But then Ac is just the sum of 2-dimen-
sional modules for (SJc, and as above 2 (x) 2 = 3 + 1 shows that all
products are zero. Thus, it is impossible for Aoo to be zero.

Consider now the possibility A*0 = 0. In this instance dimA00 =
dim A** = 4, and every derivation of A in S L 0 S 2 has rank <̂  4. If
this is the case, then any space of commuting derivations has dimen-
sion not more than one according to ([1], Corollary 16). However,
Sx 0 S2 has a 2-dimensional space of commuting derivations, so we
arrive at a contradiction. Therefore A*o Φ 0, and since Aoo Φ 0 and
dim A** = 4, it must be that dim A*o = 3. This is the first part of
the principal result of this section which we are now ready to state
and prove.

THEOREM 5.1. Let A be a real division algebra such that
sw(2)0sw(2)£Der A. Then as an su(2)®su(2)-module, A is a direct
sum of a l'dimensional module U annihilated by both copies of su(2),
a ^-dimensional module X irreducible under one copy of su(2) and
annihilated by the other, and a ^-dimensional module Y irreducible
under both copies of su(2). There exists a basis u, xlf x2, α?8, yu 2/2, V*, y±
such that the multiplication in A is given by (5.2) for some β, 7, <5, ε, 7),
ζ, θ, p, σ 6 R. Furthermore, Der A is either su(2)@su(2) or a compact
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G2; the latter occurring exactly when the following relations hold:
ε = 1 = y, βy = δ, ζ = p, Θ = σ, 7 > 0, and βpσ < 0.

(5.2)

u

X,

x2

Xz

2/1

2/2

2/3

2/4

u

u

Ox,

0*2

θxz

σy2

σVz

0-2/4

xt

βu

-Xi

X,

-572/4

-572/3

572/2

572/,

x2

C«2

βu

- χ 1

—yy2

VVi

-VV*

yyz

Xz

ζXz

-X2

Xi

βu

yyz

-572/4

572/1

572/2

2/1

PVI

ey*

£2/2

- β 2 / 3

- 7 ^ 2

- 7 ^

2/2

ί>2/2

£2/s

- s i / i

S2/4

7X2

- 7 * 1

- 7 * 3

2/3

PVS

-eyt

£2/4

— 7 * 3

7 * 1

- 7 * 2

2/4

^2/4

- 6 t f i

-S2/3

- S 2 / 2

7*,

7*3

7*2

Proof. Recall from § 1 that d, = ih, d2 = e - f d3 = i(e + /)
give a basis of su(2) such that [dd, dj+1] — 2dj+2 where the indices
are interpreted modulo 3. Let dlf 92, 33 denote such a basis for the
copy of su(2) which acts irreducibly on X, and let d[, d2, d'3 be the
corresponding basis for the other copy. Since the module X is
just the adjoint representation of su(2), there is a basis xl9 x2, x3 of
X such that the action of su(2) 0 su{2) on X is given by

( 5'
dj(Xj+ι) = 2xj+2 where the subscripts are read modulo 3

dϊ(xk) = 0 for all j and k .

Now Γ c = 2 ® 2 , or in the notation of §1, Yc = F(l) (g) F(l).
Recall V(l) (g) V(ΐ) has as basis {Vj(g)vk} where j,k = ± 1 . Let

2/1 = 'V\ ® i^i + W\ Θ 1̂ + V-i ® ίv-i + iv-i 0 v_!

^3 = iv_x 0 i^i — v_! 0 Vx + ΐ^i 0 iv__i — v1 0 v_!

Then yly yu yZf y± span an su{2) 0 su(2)-module as the table below
indicates.

2/i 2/2 2/3 2/4

(5.4)

d'2

- 2 / 4

- 2 / 2

2/3

- 2 / 4

2/2

2/3

- 2 / 3

2/1

- 2 / 4

2/3

- 2 / 1

2/4

2/2

- 2 / 4

- 2 / 1

- 2 / 2

- 2 / 4

- 2 / 1

2/1

2/3

2/2

2/1

2/3

- 2 / 2



AN INVESTIGATION OF REAL DIVISION ALGEBRAS USING DERIVATIONS 285

Thus, Y must be isomorphic to the span of the y's.
In order to deduce the products X2, UX, and XU, we recall that

for sί(2)-modules 3(g)3 = 5 + 3 + l, and 3 (g) 1 = 3 (see (1.6)). Thus,
X2 £ X + U, and XU + UX £ X, and up to scalar multiple there
is just one possible product in each case. The product from X x X
to X is just the Lie product on su(2), from X x X to U the pro-
duct is simply the inner product (as seen from the quaternions on
which su(2) acts as derivations), and from I x U to X or U x X to
X the product is just multiplication by a scalar. After replacing each
x{ by an appropriate scalar multiple of itself, we obtain the portion
of the multiplication table (5.2) pertaining to products on X + U.

Now for products involving Y, we have (3 (g) 1) (g) (2 (g) 2) =

(3 <g) 2) (g) (1 <g) 2) = (4 + 2)<g) 2 = 4 (g) 2 + 2(g) 2. Thus, XY+ YXQ Y,

dimc HomsZ(2)φ8m)(Xc (g) F c , Fc) = 1, and consequently

dimΛHom8ίt(2)Θβtt(2)(X(g) F, Y) ^ 1 .

Moreover, (2 (g> 2) (g) (2 (g) 2) = (3 + 1) <g) (3 + 1) demonstrates that
F 2 £ X + U, dim* Homβll(2)Θfll(ί)(F<g)F, X ) ^ l , and dimΛ HomSM(2)θ81t(2)(Γ(g)
F, J7) ^ 1. Finally (1 (g) 1) (g) (2 (g) 2) = 2 (g) 2 shows that constants
σ, peR exist so that Ί&^ = pyά and ^-^ = σy6 for all j .

In order to find the products XY9 YX, and Y2 we again turn
to the octonions for guidance. It is known that the transformations

are derivations of the octonions for any two elements v, w in the
octonion algebra, where LΌ{t) = vt, Rw(t) = tw, and ad[VfW-](t) = [[v^]ί].
(See [7, page 2].) Using the fact that [3, Dv>w] = A,,,,, + A,3(w), one
can verify readily that

3i = -γA 2 ,β 4 , 52 = -—DHteif 33 = - - A 1 ) ί 2

« - γ(A,.., ~ A5,e0), 3; = | (A β ,e 7 ~ A3,e5), 3J ^ | (A β ,e 3 « A5,e7)

span a sw(2) φ si6(2) subalgebra of the derivation algebra of the
octonions with multiplication as above. Moreover, if one makes the
following identifications u <-> 1, xx <-+ βx, α?2«-» e2, ίc3 *-̂> e4, yλ <--»• e3, ?/2 -̂> e5,
/̂3 •-» β6, and #4 «-> β7, the action of su(2) φ β%(2) on the a?'s and ?/'s is

exactly that given by (5.3) and (5.4). Therefore, since there is at
most one su(2) 0 sw(2)-homomorphism up to scalar multiple in each
of the cases: JSΓ® F - > F , Y®X-*Y, F(g)F->Jf, and Y®Y->U,
the homomorphism can be computed easily from the corresponding
products in the octonions. This calculation gives the remaining
entries in (5.2).
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If Der A properly contains su(2) φ su(2) for a division algebra
A with multiplication given by (5.2), then Der A must be a compact
G2, since this is the only Lie algebra in our classification of deriva-
tion algebras of real division algebras which can properly contain
su(2)@ su(2). The proof of Theorem 5.1 will be complete if we can
show that Der A is a compact G2 if and only if

(5.5) ε = 1 = η, βy = δ, ζ = p, Θ = σ, 7 > 0, and βpσ < 0 .

If A satisfies the relations (5.5), then (5.2) reduces to the multipli-
cation given in (2.1) under the correspondence given by xι^-*eιt

x2+-+e2, x3+-+e±, yι<-*Vyez, y2<-+Vye5, yB^Vye6, y±^VyeΊ, and so
Der A = compact G2 when the relations (5.5) hold.

Conversely, suppose that Der A is a compact G2 for a certain
choice of the constants in (5.2). Then A is isomorphic to one of the
algebras of the form (2.1), and this isomorphism φ must take X+ Y
onto V = (el9 e2, , e7}. Now V inherits from the alternativity of
the octonions the property that if vl9 v2 e V and if VjV2 € V then
Vi(ViV2)

 6 (^2). The same property must also hold for φ~\ V) = X+ F,
so that using (5.2) we obtain

a;8 - w J = - ( 1
+ (S3? - 37)1/8 6 <^i>

Thus, εΎ] — ?] — Q, and ε = 1 because ^ 0 in a division algebra.
Since F is anticommutative, we also have Ύ] = s, and so 77 = 1.
Then,

2/1 + τ^2) = - ( 1
037

giving βy — δ. Since left multiplication by u is just a multiple of
the identity on V, it follows the ζ = p, and similarly θ = σ. If
7 < 0, then 1/^7 is a real number and

= 0

using (5.2). Hence, 7 > 0 when A is a division algebra. Finally,
for any c e R,

(σu + cx^iσu — c^) = |θ(τu — lOσcα?! + pσcx1 — βc2u

using ζ = p and 0 = (7. If β<ocτ > 0, we can set c = Vβ~ιρσ in the
last calculation and obtain zero divisors. Thus, βpσ < 0 in a division
algebra, and we have verified all the relations of (5.5). •
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Although we shall not attempt to derive necessary and sufficient
conditions on the constants for the algebra A given by (5.2) to be
a division algebra, we note that there do exist division algebras of
this form with Der A — su(2) φ su(2). For example, if we choose

e = l = ^ = 7, β <0, β -£ δ <0, ζ = p = l = θ = σ, then A is iso-
morphic to the division algebra of ([1], Theorem 20) using the map
u^u9x1^ elf x2 <-> e2, x3 <— e4, y 1 — e3, y 2 — eβ, y z -> eQ, y , «-> e 7.

6* The case Der A = su(2) and Cer A = su(2) + N. Suppose
now A is a real division algebra and that su(2) £ Der A. Using
the convention explained in § 1 of denoting an irreducible su(2)-
module by its dimension, we can state

PROPOSITION 6.1. If A is a real division algebra such that
su(2) £ Der A, then the decomposition of A into irreducible su(2)-
modules has one of the following forms: 1 + 3, 1 + 7, 3 + 5, 1 + 1 +
3 + 3, 1 + 3 + 4, 1 + 1 + 1 + 1 + 4.

Proof. We suppose first that A is a direct sum of odd-dimen-
sional irreducible modules. At least one irreducible module of
dimension g: 3 must be present, since su(2) cannot act trivially on
all of A. Then the only possibility when dim A = 4 is 1 + 3. For
dim A = 8, we note that the elements of A annihilated by all of
su(2) form a subalgebra which has dimension 0, 1, 2, or 4. With
this restriction on the number of Γs in the decomposition, it is
immediate that the only possible decompositions are 1 + 7, 3 + 5,
and 1 + 1 + 3 + 3.

Suppose then that A has an even-dimensional irreducible module.
Since by (1.6) the product of even-dimensional irreducible modules
in Ac must lie in the sum of the odd-dimensional irreducible modules,
the same is true in A. Thus A must also have odd-dimensional
irreducible modules. In fact, the dimension of the sum of the odd-
dimensional irreducible modules must be the same as the dimension
of the sum of the even-dimensional modules, since right multiplica-
tion by any nonzero element of an even-dimensional irreducible
module will map each of these two spaces into the other. As the
smallest even-dimensional irreducible su(2)-module has dimension 4,
it follows that dim A = 8 and that A is the sum of a single 4-
dimensional irreducible module and some odd-dimensional irreducible
modules. The only possibilities are 1 + 3 + 4 and 1 + 1 + 1 +
1 + 4. •

We discuss in turn each of the cases that arise in Proposition
6.1 beginning with the case 1 + 3. This case is very similar to the
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case when Der A = compact G2, since we see that there is exactly
one product from 3 x 3 to 3 and one from 3 x 3 to 1. Then A is
just like the quaternions except that there are several constants
in the table. Specifically the multiplication table for A is given by

Uί 6/j c/2 ^4.

u

(6.2) β l

u

—βu

-βu

-βu

where we have normalized e^ e29 e± to make the scalar involved in
the product from 3 x 3 to 3 become 1, and we have normalized u
so that u2 = u. Since this algebra is a subalgebra of the algebra
given by (2.1), it is a division algebra if βηζ > 0 by Theorem 2.2.
Conversely, if the algebra given by (6.2) is a division algebra,
then the equation

0 = (aou + α^i + a2e2 + α4e4)(δ0w + Mi + b2e2 + δ4e4)

can hold only if either all the α's or all the 6's are zero. An
argument identical to the proof of Theorem 2.2 shows that this
condition implies βηζ > 0. We have proved

THEOREM 6.3. A ^-dimensional real algebra is a division
algebra with su(2) as its derivation algebra if and only if A has a
basis u, elf e2, β4 with multiplication given by (6.2) for some real
numbers β, η9 ζ such that βηζ > 0.

The best known algebra belonging to the class defined by (6.2)
is of course the algebra of quaternions, which arises by taking
β = Ύ] = ζ = 1. If we take β = 1 and η = — 1 = ζ, we obtain the
pseudo-quaternions of Okubo [8].

We consider next the case when A has the decomposition 1 + 7.
Here we can establish

THEOREM 6.4. If A is a real division algebra with su(2)QΌeτ A,
and if A breaks up as an su(2)-module into a sum of a 1-dimen*
sional module and an irreducible 7'-dimensional module, then Der A
is a compact G2. Hence the structure of A is described by Theorem
2.2.

Proof. Let A be an algebra satisfying the hypotheses of
Theorem 6.4, let U be the 1-dimensional module, and let E be the
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irreducible 7-dimensional module. Then Ϊ7(x) U = U, and so U is a
subalgebra spanned by an idempotent u. Also, Z7® E ~ E, and
right multiplication by u acts on £ as a scalar multiple of the
identity transformation. Similarly, left multiplication by u acts on
ί as a scalar multiple of the identity. By the Clebsch-Gordan
formula, there is up to a scalar multiple exactly one homomorphism
from E <g) E to E, and exactly one from E (g) E to U. If we can
show that these are the same two homomorphisms which come out
of the algebras defined by (2.1), we will have shown that the present
algebra A belongs to the class of algebras defined by (2.1). In
order to demonstrate that these homomorphisms are the same, it is
sufficient to exhibit an algebra which satisfies the hypotheses of
Theorem 6.4 and which also has the form (2.1), since the modules
involved are unique up to isomorphism. Thus, it suffices to establish
that the octonions O satisfy the hypotheses of Theorem 6.4.

Letting O be spanned by u, eu , e7 where multiplication is
given by (2.1) with β = η = ζ = 1, we show that there exists a
subalgebra of DerO isomorphic to su(2) which acts irreducibly on
E = (el9 , e7). As we noted in § 5, the maps

Diό - -adίUt9jl + 3[Le,, Rej\

are known to be derivations of O. Then the linear transforma-
tions

Δ b

are also derivations of O, and one can verify that the action of the
3/s on E is given by

βi β2 #3 ^4 #5 β; βj

<?2

-2ez

vΊδe2 V

VΪ0eβ+2 V"6e7 V

—4eβ

V β e 4

V"6e5

2 β i

-VlOee+2^

-VΪ0e 2

6eδ - 6 e 4 4e2 0

+VΪ0e 3 -

It is straightforward to check using this table that [3y, 3i+1] = 23 i+2

where the subscripts are interpreted modulo 3. Thus, du 32, 33 span
a subalgebra of DerO which is isomorphic to su(2).

It remains to show that E is irreducible under this copy S of
8u(2). We show first that each basis element e5 generates all of E
under the action of S. Let M{e3) denote the S-submodule of E
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generated by eό. From the action of dlf we see that M(e^ = M(ez),
M(e2) = M(eβ), and Λf(e4) = Λf(e6). Since 32(e4) = l/6e2 and d2(e2) = i/i0e1 —
l/6β4, we have β lLj , ββ e Af(e4). Also, d2(e2) = V\Qeι — τ/6e4 and
33(β6) = — l/6β4 — T/ϊϋβi imply that βlf - , eβe M(e2) = M(eβ). Similarly,
we obtain elf , eQeM{e^) = M(es). Since any submodule containing
elf —-,eβ contains e7 using d3(e1)=τ/lθeβ + 2v/6e7, we see that M(e1) =
M(e2) = = Λf(eβ) = £7. Then Λf(e7) = E also, because βx 6 M(e7)
follows from dz(e7) = 2VΊϊeί.

If I? is not an irreducible S-module, there exists an element
which generates a nonzero proper submodule, and among all such
elements we pick one, w ~ xιe1 + + λ7β7, of shortest length (i.e.,
with as many λ's zero as possible). It is easy to see that the
element

wx = a2w + d\w = (α2 - ^ λ ^ + (a2 - 16)λ2e2 + (a2 - 4)λ8β,'3
+ (α2 - 36)λ4β4 + (a2 - 36)λ5e5 + (a2 - 16)λ6e6 +, a%e7

will have shorter length than w for some a e {0, 2, 4, 6} and that
M(w1) £ M(w) Φ E. Since w has the shortest length among all non-
zero elements, we obtain wx = 0 for some α, which implies that w
has one of the forms

λiβi + λ3β3, λ 2β 2 + λ 6e 6, λ 4 e 4 + λ5e5, λ 7β 7 .

The case when w = X7e7 has already been eliminated. If w = λ ^ +
λ3β3, then 2λx^; + \dtw = (2λ? + 2X3)̂ , showing that et is in the
submodule generated by w. But we have shown that e1 generates
all of E, so w could not be of the form λ ^ + λ3β3. An identical
argument rules out the cases when w = X2e2 + λ6e6 and w = λ4e4+λ5e5.
Thus E is an irreducible S-module. •

We turn now to the case when A is a direct sum of an irreduc-
ible 3-dimensional su(2)-module and an irreducible 5-dimensional
sw(2)-module. Since each of 3 x 3 , 3 x 5 , 5 x 3 , 5 x 5 has one
multiplication into each of 3 and 5, there will be eight constants
in the multiplication table of A. One can construct A by thinking
of A as the 3 x 3 skew-Hermitian complex matrices of trace zero,
where both su(2) and the 3-dimensional submodule of A are identified
with the subspace of matrices which are skew (as well as skew-
Hermitian), and where the 5-dimensional module is those matrices
which are symmetric (and skew-Hermitian). The action of su(2) on
the two modules is the Lie product, and the different multiplications
between the two modules in A are obtained by resolving into the
3 and 5-components the two products on this set of matrices given
in (3.1).
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As is obvious from the construction of A, the algebras occurr-
ing here include the class of algebras studied in § 3. On the other
hand, when A has no 1-dimensional submodule for su(2), it cannot
have a 1-dimensional submodule for all of Der A, which rules out
the cases that Der A is either a compact G2 or su(2) 0 su(2), and
the case when Der A = su(S) and A is not an irreducible su(Z)-
module. We have established most of

THEOREM 6.5. If A is a real division algebra with su(2)£Der A,
and if A is the sum of an irreducible Z-dimensional su(2)-module
and an irreducible ^-dimensional su(2)-module, then either
Der A = su(2), or else Der A = su(S) and A is an irreducible su(3)-
module.

Proof. In view of our classification of the derivation algebras
of division algebras and of the remarks in the paragraph before the
statement of the theorem, it is only necessary to rule out the case
that Der A = su(2) 0 N where N is a 1-dimensional Lie algebra.
Employing the representation of A explained above, we let 3^ 32, 33

be the basis of su(2) and xlf x2, x3 the basis for the 3-dimensional
module X defined by

(b.b) O1 — e i 2 #21 = = &lf ^ 2 = = ^23 ^32 = = %2f ^ 3 = = ^13 ^31 = = *^3 f

where t h e β</s are 3 x 3 m a t r i x uni ts . We let

Vi = i(βi2 + β2i), i/2 = i{e2Z + β82), i/8 = i(eιz + e81) ,

i/4 = i(en - e22), y5 = i(e22 - e33)

be the basis of the 5-dimensional module Y.
If Der A — su(2) 0 ΛΓ, then there exists a nonzero derivation 3

commuting with dl9 32,33. By ([1], Lemma 15), the rank of any
derivation on an 8-dimensional real division algebra is 0, 4, or 6.
But d(A) is an sw(2)-submodule and so must have dimension 0, 3, 5,
or 8. Hence, 3(A) = 0, and 3 = 0. This rules out the case Der A —
su(2) + N here. •

REMARK. The question of whether real division algebras satisfy-
ing the hypotheses of Theorem 6.5 and having Der A = su(2) actually
exist has not been settled, to the best of our knowledge.

Consider next the case when the decomposition of A as su(2)~
modules is 1 + 1 + 3 + 3. By determining all possible homomor-
phisms from the tensor product of two summands into a third
summand, one can obtain a general multiplication table with 40
different scalars, but the number of constants can be decreased by
making a judicious choice of basis. This class of algebras clearly
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contains those division algebras with Der A = su(β) where A is not
an irreducible sw(3)-module, and hence also the division algebras
where Der A = compact G2. It also contains the algebras with
Der A — su(2) φ su(2), since in the notation of (5.3) and (5.4), the
elements 3X + d[, 32 + d2, 33 + 3s form a subalgebra of Der A isomor-
phic to su(2) under which A has the decomposition 1 + 1 + 3 + 3.
We don't know whether the case when Der A = su(β) and A is an
irreducible su(3)-module is included in the present case, or whether
there exist real division algebras with the decomposition 1 + 1 + 3 + 3
where Der A is either just su(2) or su(2) + N.

We turn briefly to the case where A has the s^(2)-module
decomposition 1 + 3 + 4. The general multiplication table here can
be written out using 21 constants. It is clear that those division
algebras where Der A = su(2) φ su(2) or Der A = compact G2 are
included in this class. The division algebras with Der A = su(3) and
A not an irreducible sw(3)-module are clearly not included in the
1 + 3 + 4 case, but it is less clear whether the case when Der A —
su(S) and A is an irreducible s^(3)-module is included. We have not
attempted to settle whether there are division algebras of this type
with Der A = su(2) or Der A = su(2) φ N for the case 1 + 3 + 4.

Our final case is when the s^(2)-module decomposition is 1 + 1 +
1 + 1 + 4. Again those division algebras where Der A = su(2)®su(2)
or Der A — compact G2 are included in this class. We don't know
whether either type of division algebra with Der A = su(Z) occurs
here. For this case we will prove that there are division algebras
with Der A = su(2) and also with Der A = su(2) φ N.

Let A be an algebra with basis u, el9 e2, , eΊ and multiplication
as in the octonions except that the squares of the e/s are not all
equal. Specifically, products in A are given by

u2 = u, uei = et = βiU, e\ = —βiU, for i = 1, , 7

(6.8) e ^ + x = ei+3 = —ei+1eίf ei+1ei+5 = et = — ei+1eί+3 ,

e^βt = ei+1 — —eίei+Zf where the subscripts are taken modulo 7,

and where βu β29 , βΊ are positive real numbers. We have shown
[1, Theorem 20] that this algebra is a real division algebra, and we
want to calculate its derivations for appropriate conditions on the
/3's. In particular, we shall establish

THEOREM 6.9. Let A be the real division algebra defined by
(6.8) and let βs = β6 - β6 = β7. If βlf β2, βz, βA are distinct, then
Der A = su(2). If βu β2, βz are distinct and β2 = βif then Der A =
su(2) φ JV where N is a 1-dimensional Lie algebra.
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Proof. Suppose that β3 = βδ = βQ = β79 and define the linear
transformations d[, d[9 9J, on A by

u 04 07

(6.10)

a;

0

0

0

0

0

0

0

0

0

0

0

0

-e7 β β

ee e7

05 03

- 0 7 06

03 0δ

Comparing with (5.4), we see that (6.10) defines an irreducible
module action of su(2) spanned by d[, d'2, d

r

z on the subspace Eι —
<0s, 05, 06, 07> By definition su{2) acts trivially on the subalgebra
Eo — (u, el9 e2, β4>, and we need to verify that dί, d'2, d[ act like
derivations on products of the form EOEU EXE^, and EXEX.

Since we showed in § 5 that 91, d2, d[ are derivations of the
octonions and since the present algebra is the same as the oc-
tonions except for the squares of the e s, the maps d[, d[, d[ will
act as derivations on any product of basis vectors where the verifi-
cation does not depend on calculating the square of an e^ In par-
ticular, the d̂ s act as derivations on all products of the form EQE1

or EJΰ0. For the remaining products—those of the type ExElf one
can verify directly using (6.10) and the fact that βs — βδ = β6 = β7

that each d[ behaves as a derivation. Thus, d[, d[, d[ are derivations
and span a copy of su(2) in Der A.

In order to find out which other derivations of A exist, we
need

LEMMA 6.11. If d is a derivation of the algebra A defined by
equations (6.8), then d{u) — 0 and there exist real numbers ai3- for
1 ^ i, j ^ 7 such that aid — — aH and 9(e<) = Σy=i α<yey for 1 ^ i ^ 7.

Futhermore, if βi Φ βjf then aί3- — 0.

Proof. Since u is the identity element of A, d(u) = 0. If

d(et) = aiou + Σy=i aijej for aio, an 6 R, we see from

0 = d(ef) = die^ei + etd(et) = — 2βίaiiu

that aί0 = 0 = α« for 1 ^ i ^ 7. For fixed ΐ ^ j , there exists A; such
that either et = e5 efc or et = e^-. In the former case, the e rcomponent
of

d(et) = = d(e/)e/)ek Σ α

is
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(6.12) ati = - α i 4 ,

since eόet is never a multiple of eά and since exek is a multiple of
ey exactly when I = i, in which case etek — —ed. If et = ê e,-, then
(6.12) also holds by the identical argument with left and right
interchanged. If β< Φ βjf then

(6.13) 0 = d{eiej + eάe%) = 3(e,)ey +

and the ^-component of this is

0 - 2aiόe) + 2ajte\ = 2aiά{e) - el) = 2α ί i(/3 i - βj)u ,

which implies that aiS = 0. Π

Returning to the proof of Theorem 6.9, we suppose first that
βu β* βs> & a r e distinct. Then, for any 3 e Der A, we see from
Lemma 6.11 that ai3 = 0 unless i and j are both in the set {3, 5, 6, 7},
giving d(E0) = 0 and d(Ex) Q Eλ. Hence 3(e8) = 65β5 + δ6β6 + 67e7 for
some 65, &6, &7 e R, and df = d — b6d'2 — δβ3g + 673J has the property that
d'(e3) = 0. It follows that

W = 3'(e2β3) = 3'(e2)β3 + e23'(β3) = 0 ,

d\e6) = 3'(e3e4) = d'(e3)e4 + β33'(e4) - 0 ,

3'(e7) = S'ίβA) = ^ ( e ! ) ^ + ei3'(^) = 0 ,

giving 3' = 0. Thus, 3 = b6d'2 + &β3ί - Mi e su(2), and Der A = *m(2).
Finally, suppose that βlf β2, βB are distinct and that β2 = β±. If

3 G Der A, then Lemma 6.11 implies that

d{ex) = 0, d(e2) - α24e4, 3(e4) = -α 2 4 e 2 , d{Eλ) S ^ .

If α24 = 0, the argument of the last paragraph shows that 3 e su(2),
implying that dim Der A <£ dim su(2) + 1 = 4. Thus, in order to
prove that Der A = su(2) + N, it is sufficient to show that Der A
contains a nonzero derivation 3X which commutes with 3J, 32, 3g. We
claim that if 3X is defined by

3i(w) = 0, dM = 0, 3x(e2) = 2e4, d1(e4) = -2e 2 ,

then 3X is a derivation of A commuting with 3ί, 32, 33. We saw in
§ 5 that d1 is a derivation of the octonions commuting with d[, 32, 33

(see (5.4)). Thus 3X must also commute here with 3J, 32, 33, and 3L

must act as a derivation on any product of basis vectors, since in
those cases where the calculation involves squaring on eif the two
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/3's involved will be equal. Therefore, 3X is a derivation here
also. •

7* The case when Der A is abelίaru We consider next the
case when Der A is abelian of dimension 2. By [1, Corollary 16],
dim A = 8 and there is a basis d[, d2 of Der A such that d[ and 32 are
diagonal relative to a suitable choice of basis of Ac and are of
the form

d2

diag{0, 0, ai, -ai, βi, -βί, (a + β)iy -{a + β)i)

diag {0, 0, 0, 0, yί, — yi, yi, -yi}

for nonzero real numbers α, β, y. Then 3X — (l/a)d[ — (βlay)d'2 and
d2 = (1/7)32 are also a basis for Der A and

(7.1)
3, < > d i a g {0, 0, i, - i , 0, 0, i, - ΐ }

32 ^—> d i a g {0, 0, 0, 0, i, — i, ί, — i} .

Hence there must exist a basis
that 3X and 32 are given by

2, xl9 x2, ylf y2, zlf z2 of A such

i) = 0 = 3i(

(7.2)

3i(x2) = -a?!, d^y,) = 0 = S

d = 0 = 32(^2), 32(x0 = 0 = 3

) = z2, d2(z2) = - « ! .32(l/i) = 1/2, 82(3/2) = - 2 / 1 ,

Defining the subspaces 27, X, Y, Z of A by

[7 = (ulf u2), X = (xu x2}, Y = (yl9 y2), Z = (zly z2) ,

we will show first that the product of any two of these spaces is
contained in one of the subspaces. Specifically, we will prove

LEMMA 7.3. The products of the spaces U, X, Y, Z are given
by the table

(7.4)

u
X

Y

z

u
u
X

Y

z

X

X

u
z

Y

Y

Y

z
u
X

z
z
Y

X

u

Proof. Since U is the kernel of Der A, we have U2 Q U. If
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u e U and x e X, then u, xe ker 32, so ux e ker d2 — U + X. On the
other hand, x is the image of some element x' eX under d19 and so
ux = u9i(ίc') = Ŝ wsc') is also in the image of d1 which is X + Z.
T h u s ux e (U + X) Π (X + Z) = X. S i m i l a r l y , f o r ueU a n d yeY,

we have

uy e (ker 3J n (Im 52) - (U + Y) n (Γ + Z) - Y .

For ^ G [7 and z e Z, we define 33 = 9X — d2 and note that

^ e (ker 33) f) (ImdJ = (U + Z) Π (X + Z) = Z .

The same calculations show that XU £ X, YU £ Γ, and ZΪ7 C Z.
Also, if x e X, y e Y, z e Z, we obtain

xy, yx e (Im dλ) Π (Im 32) - (X + Z) Π (Γ + ^) - ^ ,

^ , ^ x e (Im 32) n (Im 33) - (Γ + Z) Π (X + Y) - Γ ,

yz, zy e (Im 3X) n (Im 33) - (X + Z) Π (X + Γ) = X .

Finally, if a;, x' e X, then we calculate that

dx{xxr) ~ dyϋx)x' + xdx{xr)9 d\(xx') — — xx' + 231(a?)31(aj') — #

- 2xd1(xf) - 2xdx(xf) - 231{x)xf .

But 3\ acting on I m ^ has the effect of multiplying by —1, and
so

0 = d^xx') + d\{xxr) = dt(x)x' + xd^x') - 43x(x)^'

showing that xxf e ker dx. Since x9 x
f e ker 92, so is xxf', and

aa?' e (ker 30 Π (ker d2) = (U + Y) Γ\ (U + X) = U .

By an identical argument, we obtain Y2 Q U and Z2 Q U. •

The existence of the two commuting derivations dlf 32 not only
gives the block multiplication of Lemma 7.3 but also imposes some
conditions on how the elements of these different blocks multiply.
In particular, we have

THEOREM 7.5. If A is a real division algebra which has two
linearly independent commuting derivations, then A has a basis
ul9 u2, xl9 x29 yl9 y2, zl9 z2 for which the multiplication table (7.6)
holds.
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Proof. From (7.4) we know that xιy1 e Z, say x1yι — ΊXZX + 72z2.
Applying d1 and 32 respectively to this relation and using (7.2), we
obtain

XiVi = d1(x1)yί = d^x.y,) = d^y^ + 72z2) = ΊXZ2 - Ί2zγ ,

And applying 3X to the last relation gives x2y2 = 3i(£i?/2) = - 7 ^ 1 —
7222. Similarly, there exist γ3, 74, 75, 76 e J? such that x1zι — 7zyλ +
y4y2 and ̂  = rβ»i + T6̂ 2, and the application of dl9 d2, d3 = 3X — 32 to
these equations gives the remaining products of the form XZ and
YZ. The products of the form YX, ZX, and ^ Γ follow by left-
right symmetry.

Next, choosing alf a2, α3, α4 e R such that ^ ^ j . = a]x1 + α2ίr2 and
u2xx = azxλ + α4x2, we get

uxx2 — Uxd^Xί) = d^UjXx) = aλx2 — a2xlf u2x2 = dι{u2xx) = a3x2 — a±xι .

By identical arguments, we obtain all the entries in (7.4) of the
forms UX, UY, UZ, XU, YU, and ZU. Choosing βu β2, δl9 δ2 e R
with x\ = βjUx + β2u2 and xxx2 = S ^ + δ2u2, we have the relations

0 =

0 = d^xfo) = 3i(a?i)a?2 + #iδi(x2) = 2̂ — »ϊ

which give us x\ and x2xlm The entries in (7.4) of the form Y2 and
Z2 are found in the same way. Finally, the derivations 3! and 32

impose no restrictions at all on the subspace Z7, so the constants
have to be all different here. •

As our final result, we establish

THEOREM 7.7. Let A be the modified octonίon algebra defined
by (6.8). Then

( i ) if βi, ''', βτ a r e all distinct, Der A = 0.
(ii) if βlf β2, βs, βt, β6 are distinct, β3 = β5, and β6 = β7, then

dim Der A = 1.
(iii) if βlf β29 βZ9 βQ are distinct, β1 = βif βz = βδ and β6 = β79

then dim Der A — 2 and Der A is abelian.

Proof. If βl9 , βΊ are all distinct, it is immediate from Lemma
6.11 that A cannot have any nonzero derivations, giving part (i).
If the hypotheses of part (ii) of Theorem 7.7 hold and if 3 e Der A,
then Lemma 6.11 implies that
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d(e3) = α3 5e5, 3(e5) = - α 3 5 e 3 , 3(ββ) = α 6 7e 7, 3(e7) = - α 6 7 e β ,

( ' 3(w) = 0 = d(ed, 3(β2) = 0 = 3(e4) ,

for some α35, a67eR. From

α35e5 = 3(e8) =

we get α35 = — α67. Thus, Der A is at most 1-dimensional. To show
that dim Der A = 1, it is sufficient to verify that the special case
of (7.8) with α35 = 1 and α67 = — 1 is a derivation of A. But this
linear transformation was shown to be a derivation of the octonions
in § 5 (under the correspondence e3 *-* ylf e5 *- #2, eβ«— j/ 8 , r̂ «-* 3/* 3 cor-
responds to 32 in (5.4)), and so 3 will act as a derivation on any
product of basis vectors where the verification does not depend on
calculating the square of an et. Since /33 = β5 and β6 = β7 in the
case we are considering, it is clear from (7.8) that 3 will act as a
derivation even in those cases where the verification depends on
calculating the square of an et.

Finally, suppose that the hypotheses of part (iii) of Theorem
7.7 hold. Then Lemma 6.11 shows that any 3 6 Der A has the form

d(u) = 0 = 3(β2), 3(βi) = α1 4β4, 3(e4) = -auex ,

3(β8) = ^ 5 , 3(e5) = - α 3 5 e 3 , 3(ββ) = α6 7β7, 3(e7) = - α 6 7 α 6 ,

for some au, α35, a67eR. Since

α 6 7e 7 = 3(eβ) = d(e3e4) = 3(β3)e4 + e33(β4) = α3 5e5β4 — a 1 4e 3e!

= (a35 + a14)e7 ,

we see that dim Der A <; 2. It suffices to show that the special
cases of (7.9) defined by the table

u

0

0

-2e4

0

0

0

e 4 e 3

2βx - e .

0 e5

β 7

06

06

are both derivations of A. Again 32 and d'2 were shown in § 5 to be
derivations of the octonions (see (5.4)), and as we argued in the
last case, 32 and d[ must be derivations here because β1=βif β3 = βδ,
and β6 = β7. Π

REMARK. If A is a finite-dimensional real algebra with L =
Der A as its derivation algebra, then the connected Lie group G
corresponding to the Lie algebra L acts as a group of automor-
phisms on A. Furthermore, G necessarily has finite index in Aut A,
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the group of all automorphisms of A. One might ask in the case
of a real division algebra whether G can be properly contained in
Aut A, and we shall give an example to show that this can happen.
In the algebra A defined by (6.8) with all /3's distinct, we have
shown that Der A = 0 and hence G — 1. On the other hand, this
algebra has 8 automorphisms, as one sees by noting that for any
choice of εl9 ε2, ε3 e {1, — 1} the map

UQU + Σ aiei * aou + #

+ α5ε2ε3e5 + α6ε1ε2ε3β6

is an automorphism of A.
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