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This paper is to study the spatiality of unbounded deriva-
tions in operator algebras. Let -#Z be a von Neumann
algebra (C*-algebra) on a Hilbert space ¢ and 6 be an
unbounded derivation in .. In this paper, extending J to

a derivation 3 of - into a certain space of unbounded
operators, we study the spatiality of J by investigating the
property of J.

1. Introduction. Unbounded derivations in operator algebras
(C*-algebras and von Neumann algebras) have recently been inves-
tigated by many authors, since they are appeared as infinitesimal
generators of strongly continuous one-parameter groups of *-auto-
morphisms on C*-algebras [see; 12]. In particular, the infinitesimal
generator mentioned above is implemented by a symmetric operator
by giving some representation of its C*-algebra on a Hilbert space,
and there exist many closed derivations in C*-algebras which
possess such a property [2]. In this point of view, we shall study
the spatiality of unbounded derivations in operator algebras (see [2];
Problem). Our method is, roughly speaking, to examine the spatiality
of an unbounded derivation § in an operator algebra .# by extending
0 to a derivation of _# into some space of unbounded operators
containing _ .

Let _# be a von Neumann algebra acting on a Hilbert space
® and let § be a *-derivation in .#Z with o-strongly dense domain
=Z(0). Let & be a dense subspace of & We introduce various
locally convex topologies in the space %<, ®) which is the set of
all linear operators T of <7 into & with 2(T*) D &, and extend é
to a x-derivation § of _# into &%, ®) assuming corresponding
continuity of ¢ in these topologies.

We shall then examine under what conditions the continuous
x-derivation § of _# into %<7, ®) with some specified topology is
spatial, i.e., there exists an element H of ¥, &) such that
S(A)¢ = [H, Ale = (HA — AHJ¢ for all Ae # and ce . We call
the dense subspace & countably dominated by a sequence {T,} of
closed operators if 2 = Ne, 2/(T,) and || T.£| £ || Th+.8]] for each
tezZ andn=12 ---.

Our first result (Theorem 4.11) shows that if _#Z is a left von
Neumann algebra of a Hilbert algebra % with identity and < is
countably dominated by {T,} of closed operators then § is spatial.

389
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The second purpose of this paper is to show (Theorem 4.15) that
if _# has certain property (Definition 4.2) and < is countably
dominated by {T,} of closed operators 7.#' then 6 is a spatial x-
derivation of _#Z into F* =z, ©).

2. Spaces of unbounded operators. Let & be a Hilbert space
with inner product (|) and let & be a dense subspace of &. We
denote by A (Z; ®) (resp. #(=, ®)) the space of all (resp. closable)
linear operators of <7 into @ and by #% =, ®) the space of operators
A in (=, ®) for which there exists the adjoints A* whose domains
Z(A*) contain &. For each T e (=, ®) we define

e
Al =supL L Ae (g,
I 4lle = 007y

where (A/0) = o for » > 0 and (0/0) = 0,

M, = {Ae L (Z 0); || Allr < o}
and r

Wi ={Ae LN, ®); |Allr < «}.

Then it is easily seen that I, is a Banach space equipped with the
norm | - ||, and M} is a subspace of M.

The following lemma is an immediate consequence of the defini-
tions of the spaces of M, and ME.

LEMMA 2.1. Let T be an element of FH, ®) such that T e
B(®), where Z(®) denotes the algebra of all bounded linear
operators on 8. We set

By = {AT*; Ae,} and ZF = {AT; Ac i} .
Then the map ¢: A— AT is an isometric isomorphism of the Banach

space M, onto the Banach space <#(B).

LEMMA 2.2. Let ® be a Hilbert space with inner product (|).
If there exists a sequence {T,} of closed operators on ®& such that

(1) Z =Ny 2(T,) is dense in &;

(2) [Tl S (| Tansll for all (62 and n=1,2, -+, then
L, ®) = Uy MG, where T, = L.

Proof. For each £e€ =27 we set
HE”T,,L:HT%EH for ’ﬂ:O,l,Z"‘.

We consider the locally convex topology ¢, on < generated by
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family of the seminorms | - |lz,(n =0,1,2, ---). Suppose that {5} is
a Cauchy sequence in (& t,,). Then we have

J%ﬂ”sk —_— ElH =0 and klii‘rBoH T”Sk - Tnél” =0

for n=12,---.
Since T, is a closed operator, it follows that x ¢ 2/(T,) and lim,_.. .6, =
T, for n=12 ---. Hence we have zeN;, 2 (T, =<2 and
lim, ... T,& = T,» for n =1,2, ---. This implies that (&, ¢, ) is a

Fréchet space.

Suppose Se FH 2, ®). We show that the graph of S:G(S) =
{<&, S&); e 2} is closed in (Z; tr,,) x &. Suppose that a sequence
{<&., Sg,»>} in G(S) converges to an element <¢, y> of & x &. It then
follows that ¢, — e Z; lim, ... ||&, — &Il = 0 and lim, .. |[S(&, — &) —
(y — Sg)]] = 0. Since S is closable, we have y = S&. This implies
that G(S) is closed in (Z; t;7,,) X ®. By the closed graph theorem it
follows that the map S:(Z, t,) - ® is continuous. Hence there
exist a number % and a constant v > 0 such that

|Sell = v[| TWell for all ce=z.
Therefore, Se I} . This implies that 4, ©) = Ui, M.

DEFINITION 2.3. Let & be a dense subspace in a Hilbert space
®. If there exists a sequence {7} of closed operators in & such
that & = Ny 2(T,) and ||T.g| = || T.wg]l for all ¢e = and
n=1,2 -+, then & is said to be countably dominated by {T.,}.
If there exists a sequence {S,} in F*Z, @) such that &g, §) =
Uro G, and [[S,2]| = || Sa+ié]| for all e and % =1,2, ---, then
FH D, ®) is said to be countably dominated by {S,}.

REMARK. (1) Lemma 2.2 implies that if a pre-Hilbert space &
is countably dominated then F* =7, ®) is also countably dominated.

(2) It will be seen, by a simple calculation, that if <#%( =z, @) =
U M for S, e &)= N9, Z)n =12, ---), then &HF, ®)
is countably dominated.

Let & be a dense subspace of a Hilbert space &. We now
introduce some locally convex topologies on (=, ®). We put
P, (A) = [(4¢|®)] ,
P.(4) = || Ag]],

where Ae £ (2, 0®),ce =2 and v€®. The locally convex topology
on ¥ (Z,®) generated by the seminorms {P.,(-); & 7€ 2} (resp.
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{P..(-); e, xe@}, {P(-); £€ =Z}) is said to be the weak topology
(resp. quasi-weak topology, strong topology) and is simply denoted
by tZ(resp. tZ,, t2).

Let ®. be the Hilbert direct sum of the Hilbert spaces @, =
Gn=1,2,---) and let

gw(9)={{5“}€®w;fﬂeg for ’I’L=1,2,"'
and 3[4 < o for all Ade 2HF;®) .

We set

P(Gnl,(x,,,)(A) = }gl(AS%lxu)

Peod) =[S l14al]",

where A ¢ F4 7, ®), {¢,} € D.(Z) and {x,} € Z... We equip £, ®)
with the locally convex topology tZ(resp. tZ,, tZ) induced by the
seminorms {P ), 5,.(*); €}, {Va} € Z( D)} (resp. {Pie,),0,(+); {£a) €
D), {2} B}, {Pp,(+); &} € D(2))). The topology tZ, (resp.
tZ,, tZ) is said to be the o-weak topology (resp. quasi-o-weak
topology, o-strong topology) on F#(=Z, ®).

We next define the uniform topology and the quasi-uniform
topology. A subset M of & is said to be Z-bounded if

sup || A&|] < « for each Ae ¥XHZ, ©).
el

We then define
Py(A) = sup [ (A&,
§ e
P?(A) = ggmyllAEII ,

where M is Z-bounded and Ae F*(Z, @). The locally convex
topology generated by the seminorms {Py(-); I is &2-bounded} (resp.
{P?(-); M is =Z-bounded}) is said to be the uniform topology (resp.
quasi-uniform topology) on &% <=7, ®) and is simply denoted by &2
(resp. t2).

We next define the p-topology and A-topology on .#* =, @). For
each Te &4 =2, ®) we put

0s(A) = sup LAS1O]

, Ae FHF O),
o I Te (2, ©)

where (A/0) = « for » > 0 and 0/0 = 0, and
N} = {Ae LH(F, 8); p,(A) < oo} .
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Then it is easily seen that 9! is a normed space equipped with the
norm po.(:) and FHF, ®) = Urecstio,oIti. The inductive limit to-
pology on F* =7, ®) with respect to the normed spaces {(Nf, o,(-));
T e FH =, ®)} (resp. {(ME, || - ll7); Te FH=Z, ®)}) is said to be the
p-topology (resp. A-topology) on %<7, ®) and is denoted by t2
(resp. t2).

Now one may easily see the following lemma by the definitions
of the topologies.

LEMMA 2.4. The relation among the topologies introduced here
are as follows:

7 = tZ
VI Vi

PR e A étjét?’

A Al
7, = t2, S 2

ocw =

Z-l 2-2
where the symbols 7, = T,, T, = 71, Nl and VI mean the topology 7, is
T, 7,

finer than the topology ..

REMARK. The topologies t7 and tZ, (resp. the topologies ¢t7 and
t2) on £, ®) are generalizations of the uniform topology and
quasi-uniform one (resp. the p-topology and \-topology) introduced
by G. Lassner [8] (resp. D. Arnal and J. P. Jurzak [1]), for an
unbounded operator algebra respectively. We denote by ¢, (resp. t,,
ts) tow, tss) the usual uniform (resp. weak, strong, o-weak, o-strong)
topology on <Z(®). The relations between the topologies on Z(®)
areas follows: & =¢, = =8t =1t,t5 =13, =1, =1¢,ts, =t,.=
t,. and t& = t,,.

LEMMA 2.5. Suppose that FH<Z, ®) is countably dominated by
{T.} and N is a subset of 42, ®). Then the following statements
are equivalent:

(1) M is tZ-bounded;

(2) N is tZ-bounded;

(3) there exist a number n and a constant v > 0 such that

(4818 S v+ IT.Dell for all AeR and ¢e,

where T, =U|T,| is the polar decomposition of T,.

Proof. This is proved in the same way as in ([13] Lemma 2.1).
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LEMMA 2.6. Suppose that <42, ®) is countably dominated by
{T.} and N is a subset of F*=,®). Then the following statements
are equivalent:

(1) M is t7-bounded;

(2) N s tZ-bounded;

(8) N 1s tZ-bounded,;

(4) there exists a number n and a constant v > 0 such that

|Ag|| = v ||+ [T, el for all AeN and teZ .

Furthermore, if & = Nresto 0P (T), then the statements (1)~(4)
are equivalent to the following statements (5) and (6):

(5) N is tZ-bounded;

(6) M 1s tZ.-bounded.

Proof. Since t¥ = t7, and t¥ = t7, one can see the implications
4)=@1),1)=(2) and (1)=(3). We show the implication (3) = (4).
Suppose that the statement (4) is not true. Then there exists a
sequence {4,} in N and a sequence {¢,} of nonzero elements of =&
such that

HA,,E,‘”g’nZH(I—I"}T—,”DS”H for n:1:2"°' .

Putting

= En_ for m=1,2 -,
T T T ’

we have

lA7. | =n and nT,.mu<-};.

We now show {1,} € Z.(2). Since £, ®) = Ui, M}, it follows
that for each A ¢ (<, ®) there exists a number % and a constant
v > 0 such that

|4l = 7[[Twgll for all ¢ez.

Then we have
3147, < 7 31 T,
=" {Z“ Tl + | Tl + | TP+ - -+

=7 {fg;“ T"v"‘Hz + ” Tk77kH2 + “ Tk+177k+1“2 + - }
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<S4t )

< oo

This means {7,} € Z.(Z). Furthermore, we have

o 1/2
sup Py, (4) = sup| 3 || A7 ]
Aen AeRN n=1

z 4]z 0.

This contradicts that N is tZ-bounded. This comgletes the proof of
the implication (3) = (4).

The implication (2) = (4) is proved in the same way as in ([13]
Lemma 2.2).

If 2 = Nrestio.e2(T), the equivalence of the statements (1)~
(6) follows from ([1] Proposition 1.6).

3. Extension of derivations. Let _#Z be a C*-algebra (or a
von Neumann algebra). A linear map é: 2 (6) C 4 — _# is said to
be a x-derivation in _# if it satisfies the following conditions:

(1) the domain =7(8) of & is a dense =-subalgebra of _#Z(i.e.,
Z(9) is norm-dense if _# is a C*-algebra, and weak-dense if _#Z is
a von Neumann algebra);

(2) 0(AB) = 6(A)B + A4(B) for each A, Be = (d);

(8) 6(A*) = 6(A)* for each Aec 2(0).

We begin with the following lemma.

LEMMA 3.1. Let .# be a unital C*-algebra acting on a Hilbert
space & and let 0 be a *-derivation in #Z with domain 2. If
there exists a dense subspace & of & such that #Z = C <2 and o
s a continuous map of (& (5), t,) tnto (_# t2), then 0 1is extended
to a continuous linear map d of (_#, t,) into (LD, ®), t2,) such that

(1) 8(AB) = 6(A)Bs + Ai(B);

(2) 3(A)"s = d(A")g;

(3) 0(A")*Ce = Co(A)¢
Joreach A, Be _#,Ce #"and £ € 2. Namely, the following diagram
holds:

contmuous

8; (A t) — (LH(Z, ©), t2,

I U )

9; (Z(9), tu) —— (A T
continuous

By Lemma 3.1 we define a derivation of a C*-algebra into a
space of unbounded operators as follows:
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DEFINITION 3.2. Let <7 be a dense subspace in a Hilbert space
® and let _#Z be a unital C*-algebra acting on & with 7o c &.
A linear map 6 of _# into ¥(Z, ®) is said to be a derivation of
-#Z into .F(=Z, ®) if

0(AB)¢ = 6(A)Bs + Ao(B): for each A, Be. # and &€ <.

In particular, a derivation ¢ is said to be a *-derivation if the range
of 6 is contained in ¥*(=, @) and

0(A)*s = 6(A*): for each Ae ~ and <.

If a derivation 6 of _# into .= (=, ®) is a continuous map of
(o, 7)) into (F(=2, ), z,), where 7, and 7z, are topologies on .2
and (=, ®) respectively, then it is said to be (z, — 7,)-continuous.

We also have the following result:

LevMMA 3.3. Let . be a von Neumann algebra acting on a
Hilbert space & and let 6 be a =-derivation in _z. Ifd s (t, — t7,)-
continuous (resp. (¢, — t2), (tyw — t7.), (b, — t2)-continuous), then o is
extended to a (t, — t2,)-continuous (resp. (t, —t5.), Crw —t50), (tos — t5)-
continuous) =-derivation 6 of #Z into FHZ, ®) satisfying 6(A*)*Cg =
Co(A)e for each Ae _#,Ce _#" and &e .

DEFINITION 3.4. Let &2 be a dense subspace of a Hilbert space
® and let 6 be a =-derivation of a C*-algebra .Z on ® into ¥ =, ©).
If 6(#7)c M for some Te (=, @), then ¢ is said to be a =-
derivation of _# into M;. If there exists an element T of F4(Z, ®)
such that 6(_#,) is a bounded subspace of the normed space I},
where _#, is the set of all unitary operators in _#, then § is said
to be quasi-bounded.

LEMMA 3.5. Let .7 be a unital C*-algebra acting on a Hilbert
space & and let 6 be a =-derivation in _#. If there exist a dense
subspace 7 of & and an element T of F(ZF, ®) such that 7 Z C
T and ||0(A)|l; £ ||A]] for all Ae Z(0), then o is extended to a
quasi-bounded x-derivation & of _# imto D satisfying o(A*)*Ce =
Ci(A): for each Ac 7 Ce. 7' and &€ 2.

We now give some examples of quasi-bounded x-derivations.

ExampLE 3.6. Let 6 be a spatial derivation in a C*-algebra .~
acting on a Hilbert space @ with domain <=(d), i.e., there exists a
symmetric operator H on ® such that &7(6)2 (H) C &/ (H) and 6(4)¢ =
i[H, Az for each Ac &/(6) and ¢e =Z(H). If there exists a closed
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operator 7T7.#" and a constant v > 0 such that || Hz|| < v|| T¢|| for
all £e Z/(T), then ¢ is extended to a quasi-bounded x-derivation &
of # into &Y (TI),®).

2. Let _#, be a von Neumann algebra on a Hilbert space @,
and let 6, be a bounded =-derivation on _#(1=1,2,.-:). Let . #
be a direct sum of the von Neumann algebras _# and let & be the
direct sum of the Hilbert spaces &, We define

) = {A = (A)ell +; A, # 0 for only finite coordinates} ,
0(A) = (0(4)), A=(A)eZ(0).

Then 6 is a =-derivation in .# with the weakly dense domain = (d),
but it is not generally bounded. However, ¢ is (£, — tZ,)-continuous
(and (¢, —12), (t, —t2), (t, —>t2), (t, —1t?), (¢, — tZ)-continuous), where

Z ={)e®; &+ 0 for only finite coordinates} .

Putting
T = (o, 1)

where || 0;|| is the norm of 4, and I, is the identity operator on &,
we have

lo(A)e| = || Al || Tel] for each Ae =22(3) and fe<Z.

Hence, 6 is extended to a quasi-bounded =-derivation of _# into IM%.

3. Let 6 be a (¢, — t2)-continuous =-derivation of _# into
P (=L, ). If §(#) is a finite dimensional subspace of
L), then 6 is a quasi-bounded *-derivation of _# into &F* =, ®).

4. Let 0 be a x-derivation in a C*-algebra _# acting on a
Hilbert space &. If there exists a densely defined closed operator
T on ®& such that 2=2(T)c 2(T) and § is (¢, — t2")-continuous
(or (t, — tZ“)-continuous), then 6 is extended to a quasi-bounded
s-derivation of .2 into £H=2(T),®). This follows immediately
from Lemma 2.2.

As a slight generalization of Example 3.6, 4 we have the follow-
ing result:

LEMMA 3.7. Let &7 be a countably dominated subspace in a
Hilbert space ® by a sequence {T,} of closed operators on &. If ¢
s a (t, — tZ)-continuous (or (t,—1t?), t,—1t2,), e —t2.), . —12),
(t,, — t2)-continuous) *-derivation of _# into FH(=,®), then 06 is
quasi-bounded.
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Proof. Suppose that o is (¢, — tZ)-continuous. By the continuity
of 9, 8(_#) is a bounded subset of (£, ®), tZ), where _#; is the
unit ball of _#Z It then follows from Lemma 2.4 that 6(_#) is a
bounded subset of the normed space IMf.,,, for some n. This implies
that 0 is quasi-bounded.

4. The spatiality of quasi-bounded x-derivations. Throughout
this section we may assume that <& is a dense subspace of a Hilbert
space ® and .#Z is a unital C*-algebra with _Z&Z c 2. Let 6 be
a quasi-bounded *-derivation of _# into F*Z, ®), i.e., there exists
an element 7 of %<, ®) such that T-'c¢ Z(®) and §(_~#,) is a
bounded subset of the normed space Ii%.

LEMMA 4.1. Suppose that M is a subspace of F(2,®). Then
the following statements are equivalent:

(1) f 18 a tZ,-continuous linear functional on IN;

(2) f is a tZ-continuous linear functional on IM;

(3) f=2ti0,,, for £,€ 2 and x,€®, where w, ,(A) = (As|)
for Ae £ (=2,08),te 2 and € @.

Proof. This is proved in the same way as in ([1] Theorem 1.3).

Let Te %=, ®) and T-'c & (®). Then, by Lemma 2.1 & =
(AT, Ae M3} is a subspace of <Z(®). We denote by < the t,-
closure of <Z} and denote by Tt the tz,-closure of M} in L (F, ®).
Then <7} is a weakly closed subspace of Z(®) and Nt is tZ,-closed
subspace of (=7, ®). Furthermore, the following lemma is seen
by a simple calculation.

LEMMA 4.2. Let ¢ be the isomorphism of Mi onto & in Lemma
2.1. Then ¢ s a continuous map of (7, t,) onto (%, t2), so
that it is extended to a continuous linear map ¢~ of (Z#,t,) onto
(0, t2.).

LEMMA 4.3. Let & be a subset of Mi and let O be the t2,-closed
convex hull of & in L (Z,0). If & and & = {A* = A*/=Z; Ac K}
are bounded in IMMi, where A*|<Z is the restriction of A* to 2, then
Q 1s a tZ,-compact subset of Mj.

Proof. Let & be the convex hull of & Then & and (&) are
bounded in Mi. Hence we may assume that & is convex. We first
show that Q is a bounded subset of the normed space Mi. By the
boundedness of & and &* there exists a constant v > 0 such that
lA|l; < v and || A%, < v for all Aecf. For each SeQ there is a
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net {A,} in & which converges to S with respect to the topology ¢Z,.
It then follows that for each ¢c = and ze®

|(S1a)] = lim | (A.¢]2)]
< fim || A4l =)
< 7| Tell ol

so that || S|l = v. Furthermore, for each & 7€ < we have
[(Sg[m)| = lim | (A£]7)]
< im | Azl ll¢)
< v Tyl el

Hence, 7€ =2(S*). Thus we have Se i and ||S|, < v.
We show that Q is a tZ,-compact subset of If. In fact, (%“)r =
(X ez | X £ v} is weakly _compact, and so Lemma 4.2 implies that

o' ((B)r) is tZ,-compact in Mi. Since Q is a tZ,-closed subset of
(B, it follows that Q is a tZ-compact subset of M:.

Notation. Let &; be a set {U*0(U);Uc_+,} and let O, be the
tZ,-closed convex hull of & in £(Z, @).

LEMMA 4.4. Q, is a tZ,-compact subset of Mi.

Proof. It is easily seen that &, and & are bounded subsets of
IMi. Hence, the lemma follows from Lemma 4.3.

Furthermore, one may easily see the following lemma.

LeMMA 4.5. For each Uec_#, we define
A (S) =U*SU +U*o(U) for SeFH=2, O).

Then;
(1) Ayisatz-continuous affine mapof £ =2, ®) into FH=, ®);
(2) A (V*(V)) = (VU)*6(VU) for each U, Ve _#,;
(3) A,Q,CQ, for each Ue _#,;
(4) AyA, = Ay, for each U, Ve _+,.
Hence, G;,={A,;Uc _#,} is a semigroup of tZ,-continuous affine maps
of Q,; into Q.

DEFINITION 4.6. If for each pair of elements S, # S, in ®, the
t7-closure of {A,(S,) — A,(S,);Ue _+,} does not contain 0, then G;,
is said to be noncontracting.
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DEFINITION 4.7. Let & be a dense subspace of a Hilbert space
S and let _#Z be a C*-algebra acting on ® with 7z c<o. A *-
derivation (resp. a derivation) o0 of _# into &%, ®)(resp. £ (=, ®))
is said to be spatial if there exists an element H of .&7%( =2, ®)(resp.
(7, ®)) such that

0(A): =[H, Ale for all Ae _~ and ¢ec<x.

PROPOSITION 4.8. If G,, is noncontracting, then there exists an
element S of Q; such that

0(A)z =[S, Ale for all Ae 7 and e ;

that is, 0 1is spatial.

Proof. We consider the locally convex space 2z~ = (LHZ, ®), t7).
By Lemma 4.1 we have o(:2, 2 %) = t7,, and hence it follows from
Lemmas 4.4, 4.5 that Q, is a weakly compact subset of 27 and G;,
is a noncontracting semigroup of weakly continuous affine maps of
Q, into ;. By Ryll-Nardzewski’s fixed point theorem [9] there
exists an element S, of Q; such that

A (S) =S8, forall Ue. .~z .
Hence, putting S = —8,, we have

0(A): =[S, Ale for all Ae. # and fe<Z.

COROLLARY 4.9. Let & be a countably dominated subspace of a
Hilbert space & and let _#Z be a commutative C*-algebra acting on
& with 7=z <. Then there does not exist any monzero (t, —tz,)-
continuous (or (&, — €7), (to, — tiw), (Lo — 5, (£, — t3), (t, — t7)-
continuous) =-derivation in _#.

Proof. Suppose that ¢ is a =-derivation which is continuous in
one of the above topologies. It then follows from Lemma 3.3 that
o is extended to a quasi-bounded *-derivation 6 of _# into MM} where
Te (=2, ®) and T-'c Z(®). Since .~ is commutative, we can
easily see that the semigroup G;, is noncontracting. Hence it follows
from Proposition 4.8 that there exists an element H of Q; such that
0(A)e = [H, A)z for all Ac _# and £e¢<. By Lemma 3.3 the ele-
ments A and H commute, and so § = 0.

LEMMA 4.10. Let & be the completion of a maximal Hilbert
algebra A with identity e and let _#Z be the left von Neumann
algebra of A. Let 2 be a dense subspace of & such that ec 7 and
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AT D (for example, A or the maximal unbounded Hilbert algebra
LyQ) [5]). If ¢ is a quasi-bounded =-derivation of 7 into F* <=, ®)
such that 6(AYn_# for each Ac _#, then it is spatial.

Proof. Since 6 is quasi-bounded, there is an element T of
FH =, ®) such that T-'e Z(®) and §(_~,) is a bounded subset of
the normed space ;. It is easily showed that A < = and SBz =
B'Sg for all SeQ,;, B'e_»~' and £e€. This implies that G, , is non-
contracting. In fact, for each pair of elements S, % S, in Q, and
Ue_#, we have

” U*(S, — Sy Ue” = H (S, — Sz>7?(—'ﬁjen
- [[E@(S1 - S2)9H
= [[(S; — Syel]
=0,

where 7m(resp. ') is the left (resp. right) regular representation of
A and U = z(u) for uecA. Hence it follows from Proposition 4.8
that ¢ is spatial.

THEOREM 4.11. Let _# be the left von Neumann algebra of a
maximal Hilbert algebra A with identity e, @ the completion of A
and let 7 be a countably dominated subspace of & by a sequence
{T,} of closed operators such that ec & and #Z<Z C=2. If 6 is a
(t, — tZ,)-continuous (0r (&, —12), (tyw — tZ.), (t,, — tZ)-continuous) x-
derivation in _#, then it can be extended to a spatial =-derivation
o of # into FH=,®).

Proof. This follows from Lemma 3.7 and Lemma 4.10.

We next examine the spatiality of derivations of _# into I
when Ty_#' (or Ty _#).

Suppose that ¢ is a derivation of _# into M}, where T e &~ (=Z, ®)
and T-'¢ Z(®). We set

5(A) = S(AT— for Ae_x.

It then follows from Lemma 2.1 that 6, is a linear map of _# into
Z(®), and so we have the following diagram:

w w
A 0(A)
PN

N

(AT e Z ) .
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Furthermore, we have the following result, by a simple calculation

LEMMA 4.12. If Te #(=Z, ®) and T- e _#’', then the linear map
dr 18 @ derivation of _#Z into B (®).

DEFINITION 4.13. A von Neumann algebra _# on @& is said to
have the property (C) if every derivation 6 of _# into <Z(O®) is
inner; that is, 6 is implemented by an element of <Z(®).

We note [3] that if _# is of type I or properly infinite then
.# has the property (C).

PROPOSITION 4.14. Let &7 be a dense subspace in a Hilbert space
® and let _# be a von Neumann algebra on & with the property
C) and #<Z 2. If 6 is a =derivation of _# 1into M, where
Te #(2,0) and T'e 7', then there exists an element B, of & (®)
such that

o(A)¢ = [B,T, Alg
for all Ae_# and £€ =, i.e., d is spatial.

Proof. By Lemma 4.12, 6, is a derivation of _~#Z into <Z(©®).
Hence it follows by the assumption that there exists an element B,
of &#(®) such that

0.(A) =[B,, A] for all Ae_#.
This implies that
0(A)¢ =[BT, Al¢ for all Ae_# and cez.

THEOREM 4.15. Let _# be a von Neumann algebra on a Hilbert
space & with the property (C) and let 6 be a =-derivation in _#Z.
Suppose that there exists a countably dominated subspace & of &
by a sequence {T,} of closed operators T,n_#" such that o is (t,—t2,)-
continuous (or (&, —t2), ¢, — 12.,), (t,, — tZ)-continuous). Then there
exists an element B, of <Z(®) and a closed operator T7H_#" such that

3(A) = [B,T, At for all Ae () and tec .

Proof. Since T,p.#" for n =1,2, ---, we have #72 c 2. It
follows from Lemma 3.3 that ¢ is extended to a (¢, — tZ,)-continuous
s-derivation § of _# into %=, ®). Furthermore, by Lemma 2.6
6 is quasi-bounded, i.e., 5(//)C§IR§+,T”| for some n. Hence the
theorem follows from Proposition 4.14.
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COROLLARY 4.16. Let & be the completion of a Hilbert algebra
A, _# the left von Neumann algebra of U and let J be the unitary
imvolution on A. Suppose that _# has the property (C) and there
exists a countably dominated subspace =& of & by a sequence {T,} of
closed operators T, # such that JZ ==2. If 6 is a (t,— t2,)-
continuous (0r (t,— t2), (b, — t3,), (t,s — t2)-continuous) =-derivation
in _# them it is ewtended to spatial derivation 6 of _#Z into
FH, ®).

Proof. We put
T,=JT.J, n=12---.

It is then proved that & is countably dominated by the sequence
{T.} of closed operators T,7.#"'. Hence the corollary follows from
Theorem 4.15.

PrOPOSITION 4.17. Let .# be a won Neumann algebra on a
Hilbert space & and let 6 be a =-derivation in _#. If there exists
a countably dominated subspace Z of & by a sequence {T,} of closed
operators T, n.# (N .#'" such that & is (t,— tZ,)-continuous, then o
is extended to a spatial =-derivation 6 of #Z into LD, ®).

Proof. By Lemma 3.3 and Lemma 2.6, ¢ is extended to a quasi-
bounded =-derivation § of _# into Mi, where T e ¥, ®) and
T e _# N . #", satisfying 6(4*)*Ce = CS(A)¢ for each Ae_# Ce _x'
and c€ 2. Since £/ CZ and 7' C <, we have ﬂ)n// for
each Ae_# Since Te_# N _#" 6, is a derivation of _# into _#.
Hence, there exists an element B, of _# such that

6,(A) = [B,, A] for each Aec_z,
so that

6(A)¢ = [B,T, Al for all Ae_# and cez .
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