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Cameron and Storvick established a theorem for evaluat-
ing in terms of a Wiener integral the Yeh-Wiener integral
of a functional of x which depends on the values of x on a
finite number of horizontal lines. Skoug obtained the con-
verse of the theorem in case of one horizontal line. In this
paper we extend Skoug's result to the case of a finite number
of horizontal lines.

1* Introduction* Let C^a, b] denote the Wiener space of func-
tions of one variable, i.e., Cx[a, b] = {x(-)\x(a) — 0 and x(s) is continuous
on [a, b]}. Let R = {(s, t)\a £ s ^ b, a ^ t ^ β} and let C2[R] be Yeh-
Wiener space (or 2 parameter Wiener space), i.e., C2[R] = {x( , ) | x(a, t) =
x(s, a) = 0, x(s, t) is continuous on R}. Let v be Wiener measure
on G\a, b] and let m be Yeh-Wiener measure on C2[R]. For a dis-
cussion of Yeh-Wiener measure see [1], [3] and [4]. R will denote
the real numbers and C the complex numbers. We shall use the
following notation for the Cartesian product of n Wiener spaces

n (n) n in)

XCJα, b] = d[α, b] x x C^a, b] and Xv = v x x v will denote
n

the product of n Wiener measures on XCJα, 6].
Let a = t0 < tλ < • • < tΛ = β be a subdivision of [a, /?]. Define

φ: XCάa, b] -* χC,[α f 6] by

+

Then 9 is 1 — 1, onto and continuous with respect to the uniform
topology. Let G: C2[R] -> XCJα, 6] be defined by G(x) = (»(•, ίx), x( , ί2),
•• , # ( , O ) Then G is a continuous function from C2[R] onto
XQα, 6].

In [1] Cameron and Storvick evaluated certain Yeh-Wiener in-
tegrals in terms of Wiener integrals. In particular they obtained
the following theorem;

T H E O R E M A (n-parallel lines theorem). L e t f(yl9y2, •• , 2 / J be
n

a real or complex valued functional defined on XC^a, b] such that
59
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n

foφ is a Wiener measurable functional of (yl9 y2, , yn) on XC^a, b].
Then foG is a Yeh-Wiener measurable functional of x on C2[R] and

I foQ{x)dx = L foφ(yl9 y29 , yn)d{y1 x x yn)

where the existence of either integral implies the existence of the other
and their equality.

We note that Theorem A, in the case n = l, is called the one line
theorem. Now we explicitly state and prove the following corollary
of Theorem A which plays a key role in the proof of Lemma 3 in §2.

n n

COROLLARY. Let A be any subset of XCλ[a, b]. If φ~λA is Xv-
measurable, then G~XA is Yeh-Wiener measurable and Xv(φ~ιA) =
miG-'A).

Proof. Let f(yl9 y2, , yn) = lA(ylf y2, , yn). Then

f ° < P ( V l , V*, , Vn) = Ί J & i y i , V2, , V n ) ) = X φ - l A i V l , V l , ' ' , V«)

n n

If φ~xA is Xv-measurable, then foφ is Xv-measurable. Hence by
Theorem A, foG is a Yeh-Wiener measurable functional of x on C2[R].
But /oG(aj) = XA(G(x)) = Xβ-iA(x). Thus G-1^ is Yeh-Wiener meas-
urable.

n C

Xv{φ-ιA) = ln Ίφ-iA(yu y29 , 2/Jd(i/i x x 2/J

= \» /o^(2/i, 1/2, , y*)d(yi x x yJ
JxCiU^]

= \ foG{x)dx = \ XG-iA(x)dx = m{G-xA) .
JC2[2?] J C 2 [ Λ ]

It has long been known that measurability questions in Wiener
space and Yeh-Wiener space are often rather delicate. In [3] Skoug
established some relationships between Yeh-Wiener measurability and
Wiener measurability of certain sets and functionals. Furthermore
he obtained the converse of the one line theorem. In this paper we
extend his result to the ^-parallel lines theorem. In particular we
show that if A is any subset of XCx[α, 6], then G^A is a Yeh-Wiener
measurable subset of C2[R] if and only if φ~λA is a Wiener measurable

n

subset of χCi[α, 6],

2* Lemmas* The converse measurability theorems in §3 will
follow quite readily once we establish three lemmas.
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DEFINITION. Let 5 be a fixed constant satisfying 0 < δ < 1/2
and let λ > 0 be given. Let

Aλ = Aλ(δ) = {xe C2[R]: \ x(s2, Q - x(sl9 Q | ^ X[(s2 - s,)2 + (ί2 - tx)ψ2

for all sl9 s2 e [α, b] and tl9 t2 e [α, /5]} .

Our first lemma is taken from [3]. We state it without proof.

LEMMA 1. (a) For any ε > 0, there exists λ0 > 0 such that
m{A\) < ε for all X :> λ0. In fact m(Un=i AJ = 1- (b) i'W each
X > 0, A^ is compact in the uniform topology in C2[R].

n

LEMMA 2. Let A be any subset of XCΊ[α, b] and let V be any
open set in C2[R] containing G~λA. Let X > 0 be given. Then there

n

exists an open set U in XCΊ[α, b] such that A QU and Aλ Π G^UQ V.

Proof. Case 1. Assume that A consists of just one point, say,
(Vi, , yj- Suppose that Lemma 2 is false. For n = 1, 2, 3, , let
Un be open sphere of radius 1/n about (yl9 y2, •• ,2/J. Then there
exists a sequence of points {a?Λ}~=1 in (Aλ n G~ιUJ\V. Hence {xn}Z=ι C
^ and ||Gα?Λ — (yl9 y2, — ,yn)\\ < 1/n where || || is a product norm
in XCλ[a, b]. Since Aλ is compact in the uniform topology for C2[R],
there exists a subsequence {#Λfc}£U which converges uniformly on R
to some element, say xQy of C2[R]. By continuity of G, (^x, , yn) =
lim/c_>Oo GxM;, = Gx0. Thus G^o is in A and #0 is in G~XA. But F c is closed
and so xQ is in Vc £ (G" 1^) 0 which is contrary to xQ e G- 1A.

n

Case 2. General case. Let A be any set in XCJα, 6]. By Case

1, we see that for each point z in A there exists an open set Uz in

XCJα, 6] such that z e Uz and Aλ n G-χi7z S 7 . Then Ef= U.e^?7, is

an open set in XG1[ay b] containing A and

Aλ n G-'u - A, n ( W u ^)) = U (A, n G-ιuz) c F .

LEMMA 3. Lei A 6β α ^ subset of XCx[a9 6]. Γfeeπ m*G-χA =
n n

(Xv)*(φ-ιA) where m* and (Xv)* are ouίer Yeh-Wiener and product
Wiener measures respectively.

Proof. First we will show that m*G~xA ^ (Xv)*^- 1 ^). Let A

be a subset of XCJα, 6] such that A Q A9 φ~xA is Xv-measurable

and Xvtφ^A) = ( X J ; ) * ^ " 1 ^ ) . Note that such A exists since there
n n

exists a subset B of X φ , δ] such that B is Xv-measurable and
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Xv(B) = {XvYiφ-'A) and φ-'A^B. Let A = <p(B). ' Then A =
<p(<p-xA) C φ(2?) = A and φ-^A) = φ'\φ{B)) = E. By Corollary of
Theorem A, G - 1A is Yeh-Wiener measurable and m*G~xA <; m*©- 1 ^ =

To show (Xv)*{φ-ιA) ^ m*G~ιA, it suffices to show that for given
ε > 0, (Xz^Op^A) <; m*G~ιA + ε. Now choose a Yeh-Wiener meas-
urable set H such that G~λA £ jff and m*G~1A = mJϊ. Next we
choose % > 0 so large that m(Ae

n) < ε/2 [Lemma 1], Then

(1) m(H U A;) ^ mJϊ + m(A;) < m*^- 1^ + ε/2 .

Let F be an open subset of C2[R] such that HijA^QV and
m(V\[HΌAi\) < ε/2 [2, Theorem 1.2, p. 27]. Then

(2) mV < m{HΌAc

n) + ε/2 .

By Lemma 2 (note that G~'A ^ HQ HU Ac

n<^V and F is open), there

exists an open set U £ XC^a, b] such that AQU and An (Ί G~xί7 C
F. But (G-'U) n i c i SffUiiSF. Hence

( 3 ) G~ιU = (G- 1^ n AJ U (G- 1^ n A ; ) S 7 .

Since 17 is open and 9? is continuous, φ-^JJ is open. Hence φ~ιU is

Xv-measurable. By continuity of G, G~xi7 is Yeh-Wiener measurable

and m(G~ιU) = Xviφ-'U). By (1), (2) and (3) we obtain (Xv)*^"^) ^

Xv{φ~ιU) - miG-'U) ^mV < m{H U AC

M) + ε/2 < m*G~γA + ε.

3* Converse measurabϋity theorems* Our first theorem in this
section establishes a relationship between Yeh-Wiener measurability
and product Wiener measurability of certain related sets. In Theorem
2 we obtain the converse of Theorem A.

THEOREM 1. Let A be any subset of XQα, b]. Then G~XA is

Yeh-Wiener measurable if and only if φ~λA is Xv-measurable.
n

Furthermore m{G~ιA) =

Proof. We only need to show that if G~λA is Yeh-Wiener

measurable then φ~λA is Xv-measurable. So assume that G~ιA is

Yeh-Wiener measurable. By Lemma 3, m*G~1A — (Xv)*(φ~1A). Another

application of Lemma 3 yields (Xv)*(^-1A)c

AY. Thus we obtain that

+ {XvYiφ-'A) = m^iG-'AY +
= m(G~ιA) + m
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n

from which it follows that φ~1A is Xv-measurable.

THEOREM 2. Let a = tQ < tλ < <tn = β and let f(yu y2, , yn)
n

be a real or complex valued functional defined on yζC^a, b]. Then
foφ is a Wiener measurable functional of (yl9 y2, , yn) on XCJα, 6]
if and only if f°G is a Yeh-Wiener measurable functional of x on
C.^R]. In this case,

\ foG(χ)dx = f f°<p(yl9 y2, , yn)d{yλ x x yn)

where the existence of either integral implies the existence of the other
and their equality.

Proof. By Theorem A it suffices to show measurability only.
Let B be any Borel set in R or C. Suppose that f<>G is Yeh-Wiener
measurable. Then G'^f^B) = (f°G)~ι(B) is Yeh-Wiener measurable.

n

By Theorem 1, φ~\f~ιB) = (f°φ)"1(B) is X^-measurable. Hence foφ

is X^-measurable.
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