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The definition of taut submanifolds in Euclidean space
is extended to submanifolds of an arbitrary complete
Riemannian manifold. Manifolds containing a tautly em-
bedded hypersphere are characterized up to homeomorphism.
Also, a partial result in this direction is proved for manifolds
containing a tautly embedded sphere of arbitrary codimension.

1. Taut submanifolds have received much attention in recent
years [1], [3], [6], [7]. There the emphasis is on characterizing the
taut submanifolds of a particular ambient space, usually Euclidean
space, although there are studies involving hyperbolic space and
complex projective space as well [4], [5]. In this paper the subject
is approached from a different perspective: to characterize the am-
bient space given that it contains certain taut submanifolds. For
example:

THEOREM 1. A complete simply connected Riemannian manifold
of dimension n that admits a taut embedding of S is either homeo-
morphic to S*, diffeomorphic to R*, or diffeomorphic to S**' x R.

In a Euclidean sphere or in a complete, simply-connected Rie-
mannian manifold without conjugate points, every geodesic sphere
is taut. The converse is also true.

THEOREM 2. Suppose a complete Riemannian manifold has the
property that about every point some small geodesic sphere is taut.
Then the manifold is either simply connected without conjugate
points or 1sometric to a Fuclidean sphere.

2. Let M be a complete Riemannian manifold and N M a
proper submanifold. In particular, N is a closed submanifold with
the subspace topology. For each pe M, we define the function
L, N— R by L,(x) = [d(x, p)]* where xc N and d is the distance
function on M. We say N is taut if for almost every pe M and
almost every » > 0 the homeomorphism

Uy Ho(L3([0, 7)) — H.(N)

induced by inclusion is injective, where the homology coefficients
are in some field. Because of Lemma 2.8 on page 705 of [3], this
definition coincides with the definition for taut submanifolds of
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Euclidean space. It roughly states that on a dense set of pe M,
the function L, has the least possible number of critical points.

L, is a continuous function which is smooth at the points of N
that are not in the cut locus C(p) of p. At these points, one has
a characterization of a critical point of L, and its index in terms
of the foeal points of N [12].

PROPOSITION 1. A point x,€ N, x,¢ C(p) is a critical point of
L, if and only if the unmique minimizing geodesic from p to x, is
perpendicular to N at x,. Furthermore, its index is the number of
Jocal points of N between x, and p, counted with multiplicity, along
this geodesic, and its nullity is the multiplicity of » as a focal
pornt.

Proof. The first statement follows from the first variation
formula, and the second is essentially the finite dimensional approxi-
mation of the path space by broken geodesics, e.g., [10], page 160,
where broken geodesics are unnecessary since we evade the cut locus
of p. |

The nature of the critical points of L, and L, are similar if p
and p’ are close together.

PROPOSITION 2. (i) Let x,€ N, x,¢ C(p) and U be a mneighbor-
hood of %, in N. If x, is a nondegenerate critical point of L, with
index N, then for all p' sufficiently near p, L, has a mondegenerate
eritical point in U of index .

(ii) Let K < N be a compact subset and U a relatively compact
neighborhood of K in N. If L, has a relative minimum on K,
i.e., L, 1s constant on K and L, (x) > L(K) for all xc U — K, then
for all v’ sufficiently near p, L, attains a relative minimum in U.
A similar statement is true for relative maximums.

Proof. (i) is a consequence of the fact that nearby geodesics
have the same index. The proof of (ii) is analogous to Lemma 5.1

of [11]. M

In what follows, we will be concerned with taut embeddings of
spheres S*. In this case, the tautness condition and Proposition 2
imply that a relative minimum of L, is an absolute minimum, that
a relative maximum is an absolute maximum, and that the index of
any nondegenerate critical point must be either 0 or k.

3. In this section we prove Theorem 1. We begin with the
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following proposition.

PROPOSITION 3. Let M be a complete Riemannian manifold and
N a taut connected hypersurface which separates M. Let v be a
geodesic starting at x,€ N perpendicularly to N. If there exists a
cut point of x, along v, then the first focal point of N along v oc-
curs between x, and the cut point.

Proof. Since N separates M, M — N consists of two connected
components. Furthermore, being taut, the relative minimums of L,
are absolute minimums. Let p, be the cut point of %, along v and
suppose the first focal point of N along v does not occur between
2, and p,. Then, by Proposition 1, for any p along v between x,
and p,, L, has a nondegenerate relative minimum at x,, there being
no focal points between x, and p. This is an absolute minimum.
Thus for all € N, d(z, p) = d(x,, p) and by taking limits as p ap-
proaches p,, d(z, p,) = d(x,, p,) for all e N. This shows that the
segment of v between x, and p, is contained in one of the components
of M — N. (If it wasn’t we could find a point of N closer to p,
than 2,.) Extend v on the “other side” of N and take a point ¢ on
v close enough to N so that there is no focal point between z, and
g, and ¢ lies on the opposite side of N from p,. As before, L,
attains its absolute minimum at z,. Thus d(x, q¢) = d(x,, ¢) for all
xeN. Now, the segment of v between ¢ and p, is not minimizing,
since it contains the cut point x, of p,. Hence, by completeness of
M, there is a minimizing segment ¢ connecting ¢ to p,. Since N
separates M, o intersects N at some point x. Hence d(p, q) =
d(p,, x) + d(x, 9) = d(p,, 2,) + d(x,, @) = length of the segment of 7,
which contradicts the nonminimality of v. Therefore we have shown
the first focal point of N occurs between 2z, and p,. 1

RemARk. By [13], if M is simply connected, every properly
embedded, connected hypersurface of M separates M. Thus the
hypothesis that N separates M can be dropped from Proposition 3
if M is simply connected.

In view of this remark, Theorem 1 is a consequence of the fol-
lowing Theorem 1’.

THEOREM 1'. Let M be a complete Riemannian manifold of
dimension n that admits a taut embedding of S™' which separates
M, then M is either homeomorphic to S*, diffeomorphic to R*, or
diffeomorphic to S™* X R.

Proof. Let N be the taut embedding of S~ separating M.
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Thus by Proposition 3, we can conclude that the first focal points
occur prior to the cut points. The results of § 2 allow us to conclude
that a first focal point must be of multiplicity # — 1. (If not, by
choosing a point p slightly beyond the first focal point on the geo-
desic, the function L, would have a nondegenerate critical point of
index A with 0 <ax<n—1.) If p, is the first focal point of N
along v starting perpendicularly at 2,€ N, then L, is constant on
N. For taking p between z, and p,, L, has a minimum at z, and
p with p, between z, and p, L, has a maximum at x,. Since these
are absolute extrema, on taking limits as p approaches p, we find
L, is constant. Since the multiplicity of the first focal points is
constant, the first focal locus is an # — 1 dimensional submanifold
of the normal bundle of N [9]. (A generalization of Warner’s regular
conjugate locus [14].) Furthermore, we have essentially shown that
the distance to the first focal point is constant on each side of N.
(We are in a situation analogous to the regular spherical conjugate
loci of [15].) Hence, the components of the first focal locus in the
normal bundle get identified each to a single point, since the focal
points are of maximal multiplicity. Now the first focal locus has at
most one component on each side of N. Hence this leaves three
possibilities, either there are two focal points of N, one on either
side; there is only one focal point; or there are no focal points.
Now, two geodesics starting perpendicularly to N cannot meet until
at least one of them has reached the first focal point, otherwise if
p is the point of intersection, L, has two distinct minima in con-
tradiction to the tautness of N. This says that the exponential
map of the normal bundle of N into M is one-one on the set of
normal vectors shorter than the distance to the focal point. Thus
if there are no focal points the exponential map gives a diffeomor-
phism of the normal bundle of N to M, hence M is diffeomorphic
to S** x R. If there is only one focal point, p,, then N is a geo-
desic sphere about p, and since the focal points of a geodesic sphere
about a point correspond to the conjugate points of that point, p, has
no conjugate points. Furthermore, since the exponential map on the
normal bundle of N is one-one up to the focal points, the exponential
map at p, is one-one. Hence, M is diffeomorphic to T, M = R* under
the exponential map at p,. Lastly, if there are two focal points,
let p, be one of them. Then, N is a geodesic sphere about p,, and,
by the same reasoning as in the previous case, the first conjugate
points to p, occur at constant distance and no pair of geodesics
emitted from p, meet before this conjugate point which is of multi-
plicity » — 1. We can conclude that M is a Blaschke manifold at
Do, and is homeomorphic to S*. (See Theorem 5.43 of [2] and Theo-
rem 3.1 of [15].) ]
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4. In order to prove Theorem 2, suppose that for every p e M,
some geodesic sphere S(p, ) about p of radius # less than the injec-
tivity radius at p is taut. Certainly, every such geodesic sphere
separates M, and p is a focal point of S(p,»). This leaves two
possibilities. Either M is diffeomorphic to R* and every p < M has
no conjugate points, or M is homeomorphic to S* and is a Blaschke
manifold at every point. In the second case, Berger’s theorem in
Appendix D of [2], states that M is isometric to a Euclidean sphere.
This proves Theorem 2.

5. In this section we sketch a partial result for manifolds ad-
mitting taut spheres of arbitrary codimension. The following was
proved in [8] with an extra assumption of simple connectivity.

THEOREM 3. Let M be a compact Riemannian manifold admit-
ting a taut embedding of S*. Suppose that the first focal point on
every geodesic starting at x,€ S* perpendicularly to S* occurs between
%, and its cut point. Then M is homeomorphic to a sphere.

Proof. As in §3, we show that the multiplicity of a first focal
point is k, that for every first focal point p,, L, is constant on S*,
and that a pair of geodesics starting perpendicularly to S* do not
meet until at least one of them has reached the first focal point.
If we consider the first focal locus X of S* in the normal bundle,
it can be shown that X is a hypersurface of the normal bundle and
that the exponential map restricted to X is a submersion into M
[9]. Since M is compact, every geodesic has cut points, and we
may conclude that X is compact. Hence, using the submersion,
exp(X) = K is a compact submanifold of M of dimension » — k& — 1.
Futhermore, one can prove that M is expressible as the union of
the normal disk bundle of S* and the normal disk bundle of K pasted
together by a diffeomorphism of their boundaries. These common
boundaries may be identified with X in such a way that the ex-
ponential map restricted to X is the projection of the normal sphere
bundle onto K. The map (7w, exp): X — S* X K, where 7# is the
restriction to X of the projection of the normal bundle of S* onto
S*, is a diffeomorphism because, first of all, it is clearly an immer-
sion of manifolds of the same dimension and compactness implies it
is onto, and secondly, if it was not one to one, one could find two
minimizing geodesics from a point x,€S* to a foeal point p,c K,
contradicting the condition that the first focal point occurs before
the cut point. Similarly, for any x,¢S*, exp: 7z '(x,) — K is a diffeo-
morphism. Therefore, K is diffeomorphic to S**' since z(x,) is
diffeomorphic to S**, and X is diffeomorphic to S* x S***. By
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the mapping cylinder construction, we see that the normal disk
bundle of S* is homeomorphic to S* x D** that the normal disk
bundle of K is homeomorphic to D*™ x S*-*-!, and that the pasting
map on the boundaries corresponds to the identity map. However,
S* x D** and D*"* x S*~*! pasted together via the identity map on
the boundaries is the sphere S». N

REMARK. The condition on the focal points is not generally
satisfied by taut spheres when the codimension is greater than one.
A easy example is the following. Let M = S™ x S*. Let S* be a
great sphere in S™ with & < m, and peS*. The submanifold N =
S* x {p} is taut. However, along the geodesic v = (w,, v,), where 7,
is a geodesic in S* starting at » and x,¢ S*, the first focal point of
N and the cut point to (x, ») coincide.
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