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SAMPLE FUNCTIONS OF POLYA PROCESSES

TAKAYUKI KAWADA

For a nonnegative measurable function f satisfying
S“’ Fayde =1,

define

() — S“’ min{f(x), f(x - H)da .

Berman proved, extending so-called ‘“‘Polya character-
istic function’’, that the » is the characteristic function
of an absolutely continuous distribution. The positive-
definiteness of the r corresponds to a stationary Gaussian
process, which is called Polya-Covariance process or simply
Polya process.

In this paper, some analytic properties of its sample
functions are studied: (1) continuity, (2) differentiability,
(3) quadratic variation, and (4) upper and lower class.

1. Introduction. Berman [2] extended a class of characteristic
funections described by Polya [7]: Let f(z) be a nonnegative meas-
urable function satisfying

(1.1) S: f@dz =1.
Put
(1.2) ") = S";min{ F@), f@ + t)da .

The » is a characteristic function, corresponding to an absolutely
continuous distribution. Since the 7 is considered as a covariance
funetion, there corresponds to a stationary Gaussian process X with
mean zero and with the covariance function ». This process is often
called Polya Covariance Process [2] or simply Polya process (cf: the
review for [2], MR 52 (1976), #9345).

The Polya process X has a representation by Cabaiia and Wschebor,
using the plane Wiener process W:

Xt = e+ 0 - yWs < ay),

(y>0)

where I(u) =1 for >0 and I(u) =0 for u <0 (Berman [2]). This re-
presentation is not used in this paper, but in terms of the covariance
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126 TAKAYUKI KAWADA

funection (1.2), some analytic properties of sample functions of Polya
processes are studied.

In §2, a basic hypothesis (H) is introduced, which reveals a
foundation of the properties of their sample functions in terms of
the 7, that is, of f.

2. A basic hypothesis. Let f be a function of bounded variation
in an interval [a, b]. Denote the total variation by V (a, b]). The
Vla, b]) is decomposed into the positive variation V**([a, b]) and
the negative variation V}?¢([a, b]):

Vi(a, b)) =Vi*(a, b)) + Vi*(a, b)) ,
and moreover
2.1) Vila, b)) = 2V*({a, b)) + {f(b) — f(a)} .

When f is defined in (—co, o), being monotone outside of an
interval [a, b] and f(Z o) = 0, define the total variation in (—co, )
or denoting by V(f) simply:

V() =Vila, b]) + {£(®) + f(a)} .

In more general, the total variation in (— oo, co) for a function f
being given in (— oo, o) is defined, denoting by V(f) again, as the
limit of the total variation in any finite interval [a, b], V([a, b]) as
a— —oo and b— . Then we have similarity

V() = V() +V:(f)
and
(2.2) V() = 2V™(f) .
Now, define

S(e) = 1—1"—(3)—

and introduce a basic hypothesis:
(H) limSEe) = Lv(p) .
el0 2
LEMMA. If f is continuous im (—oe, o), 18 monotone outside of

a finite interval, and of bounded wvariation satisfying (1.1) and
f(d) =0, then for the r defined by the f, the hypothesis (H) holds.
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Proof. (i) (A motive case). Take a unimodal function f satisfy-
ing the assumption of the lemma. Let ¢(¢) be the coordinate where
the curves y = f(x) and ¥y = f(x + t) intersect. Then we have

1=t = |* f@de — |* min(f@, f@ + )da

oo

i
=" @) — f@ + D)de
S flx)dx — r flx)dx

q(t) g(t)+t

= tf(q(t) + t0), 0 (0,1).

Then (1 — »(#)/t = f(q(t) + tf) converges to the maximum of f in
(— oo, o), that is, to V(f)/2.

(ii) (A preparative remark). We take a partition =, of a finite
interval [a, b]:

T,y =2, <2, < - <2, =>b,

Let’s denote by w(z,, ®,,,) the oscillation of f in [z, 2,.,], and define
O(T,) = >, (X, Tppy)- Then, it is well known that

o, — V(a, b]) as the mesh (z,)— 0.

(iii) (General case). For a given positive ¢, the intersection-
points of the curves y = f(x) and y = f(x + ¢t) are at most denu-
merable. Write their coordinates as follows; -« < b;,_,(t) < a,(t) <
b.(t) < ay,,(t) < --- for which for any « in the interval [a,(t), b,(t)],
f(x) > f(x + t) holds. This is considered one of partition in (— oo, o),
which is denoted by =(¢). Denote the cardinality of such intervals
by K(t). Write by a.(f) the coordinate of the intersection which
has not the corresponding b(t), that is, the largest among the {a,(¢)}.
Then we obtain, writing {a.}, {b.} simply for {a.(?)}, {b.(®)},

1= r)) = 3" @ = f@ + O)da + | 1@ ~ S + O)do

k=1 Jap

K(t)

2.3) = {St:kf (@)dz — S:’“ f(x)dx} + S;“’ f@)da

= 30 {f (@ + 1.(0) — f B, + GO} + tf (@ + 10.0)
= tS() ,

finding the sequences {6,(t)} and {6;(t)} from the interval [0, 1]. Then
we have

S@) =V™(f) ,

and applying the remark (ii) to the present case,
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o(#(t) — V(f) as t|0.
On the other hand, for any ¢ > 0, it is possible from (2.8) and (2.2)
to find a sequence {¢, | 0} such that
Lo(t) = St) + ¢

These establish the lemma.
The lemma shows only one example of classes satisfying the
hypothesis (H).

3. Sample continuity. Since Polya process X is a stationary
Gaussian process, it has either sample continuous version or sample
unbounded one (Ju. K. Beljaev [1]). This alternative depends on the
function f, appearing in (1.2). The variance of the increment of
Polya process X has the exact form;

3.1 E{(X(s) — X))} = 2(1 — =(|s — ¢])) .

Now, it is possible to make use of the Fernique’s condition for a
separable stationary Gaussian process Y to have sample continuous
version ([4]) in a following modification:

Suppose that there exists, for a real-valued, separable stationary
Gaussian process Y with mean zero, a function ¢ monotone increasing
in the meighborhood of the origin and satisfying, for (s, t)e R?,

(3.2) kg'(ls —t) = E{(Y(s) —Y())} = kup’(ls — ), (Is —¢t[—0),

where k, and k, are absolute constants.

If
@3) oo < oo, (=e0),
then the Y has sample continuous version (sample unbounded version).

Indeed, take o as the inverse function of ¢. The change of
variable: exp(—2®) = 4r(u) implies the integral (3.3) is equivalent to

(3.4) |, og(L/y(w) du .

On the other hand, let N(V, ¢*) be the minimal number of open
d-ball of the radius ¢7%, (¢ > 1), covering V = [—1/2, 1/2], with pseudo-
metric d(s, t) = EV}{(Y(s) — Y(¢))’}. Then it leads to

(3.5) NV, ¢7) = O([1/2y(¢7*/C)) , (b—— =),
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where the bracket [ ] indicates the integral part and C is a constant
relying on the %k, and %k, in (3.2). Then (3.4) and (3.5) implies the
Fernique’s condition:

2. g7 *(log N(V, ¢7))* .

Therefore the separable Polya process X has continuous version or
unbounded version according to

(3.6) Sm(1 — e e < o, of = oo,
since 1 — 7(t) satisfies the conditions of ¢ in the Fernique’s condition.

THEOREM 1. If the covariance function r of a separable Polya
process satisfies the hypothesis (H), then sample functions are con-
tinuwous almost surely.

Proof. From (H), we have for a sufficiently small ¢
1— () seV(f).

Therefore
Sm{z(l — q«(e—xZ))}l/zdm < 2 Soo{ V(f)e"”2}1/2dx .

This establishes the theorem.

The following example shows the sample unboundedness of Polya
process, being defined by the f which does not satisfy conditions in
the Theorem 1, that is, f is not continuous at the two points and
not of bounded variation. This Polya process is an example of the
class considered by Fernique [3].

ExampLE 3.1. Let’s define g by
_a & 2 *
0@ = {1/ log | [] log, o, we(0,1/e™),
X i=2

where log, x is the j-times iterated logarithm of x, and e*» is de-
fined recursively as follows: e** = ¢"* ™ e = ¢ ¢* = ¢, e =1, (k =

3,4,5, ---). Set
= (i)

k=0
and define

gx)/E,  for xe(0,1/e*),
0, otherwise .

fl@) = {
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Then, the Polya process X, corresponding to the 7 defined by the f,
is sample unbounded: In fact,

"t) = S:min{ @), f@ + tde, ¢ > 0)
= r f@ + tda
= "rway .
Since
#(t) = B(X(s + t) — X@)) = 21 — &) = 2 | fw)de ,
we have
| seat = o,

which implies the unboundedness of almost all sample functions.
But, even when it assumed that f is not of bounded variation

in opposition to the Theorem 1, an example is constructed, which

shows the sample continuity of the corresponding Polya process.

ExampLE 3.2. Let’s define g by

_ (lsin(l/@)], for z¢€]0, 1/z],
9(@) = {0 , otherwise .

Set K = S””g(x)dx. Define f by
0

Sg(x)/K ) for z¢l0, 1/7],
o, otherwise .

f(@) =

The f(x) is nonnegative continuous in (—co, o) satisfying (1.1), but
not of bounded variation. But, the Polya process, corresponding to
the covariance () = Sw min{f(x), f(x + t)}dx, has sample continuity:
In fact, by taking a pc;;eitive ¢ and a positive M, such that 3M = ¢,
we have

| @ = reyda

3.7) - SHUM)M(I — 1)) dx

ct+kM

Il

M3, — rexp(—(c + (k+0)MH)",
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where for each k, 6,€(0, 1).

The square of a summand, (1 — r(exp{—(¢c + (k + 6,)M)%})) is, as
stated in the the proof of lemma, equal to the total area enclosed
by the curves y, = f(x) and ¥, = f(x + ext{—(c+(k + 9.,)M)*}), where
Y, > ¥, in [0, 1/x). The coordinates of zeros of f(x) are 1/2nw and
1/@2n + Dz, (n=1,2,8, ---). The distance between a zero and a
consecutive local maximal extreme; (1/2n7) — (1/@nzw + ©/2)) or
1/@n + 1)m) — 1/(2n + ) + =/2) is smaller than 1/8n*. Determine
an integer n such that the shift-width does not exceed over 1/8%°
that is, 1/8n* > exp{— (¢ + (k + 6,)M)?}, namely,

(3.8) n < (gletrnmEgys

For »’s satisfy (8.8), the area, which is generated by a shift
exp{—(¢c + (k + 6,)M)%}, being enclosed by y, = f(x) and y, = f(x +
exp{—(¢c + (k + 6,)M)*), where y, > ¥,, is estimated by an absolute
constant multiple of

@9  eerw] o {1/(27”: + %) 41 / (@n+ 17+ 125)} .

Using (3.8) for estimate of the cardinality of the summands in (3.9),
it is moreover majorated by a constant multiple of

exp{—(c + (k — 1)M)*}(exp{(c + (k + 1)M)*}/8)"*,
that is, by a constant multiple of
(3.10) exp{—(Mk — BM — ¢))*/2} .

Next, for the area of the part in which % does not satisfy (3.8),
set m, = (exp{c + (k + 1)M}*/8)"* which appeared in (3.8), and take a
rectangular triangle of which vertices are (0, 0), (0, 1, 2n,7) and (1/2n,7,
1/K(2n,)). Then the rectangular triangle covers the part enclosed
by the curve y, = f(x) and the line ¥y = 0. The area of the rectan-
gular triangle, 1/2K(2n,7)* is estimated by

(3.11) exp{—(¢c + (k + 1))M)}/n*K .
By (3.10) and (3.11), we have

1 — r(exp{—(c + (k + 6,)M)*}) < Const. ¢~ W*-C¥=-%/2
+ Const. e—(c+(k+1)M)2 .

As we set 3M = ¢,
{1 — r(exp{—(c + (k + 6,)M)*})}'* < Const. e P+

This assures the convergence of the series in (3.7). It implies the
assertion by the Fernique’s condition.
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ExamMpLE 3.3. Let’s define

exp(—x/2)/2, for x¢€[0, =),
0, otherwise .

@) = {

Then we see that »(t) = exp(—t/2), for a nonnegative ¢. The Polya
process corresponding to the 7 is an Ornstein — Uhlenbeck’s Brownian
motion X:
t
X(t) = exp(—t/2)| _exp(u/2)dB) ,
where B stands for the ordinary Brownian motion.

4, Nowhere differentiability of sample functions., In [5], a
condition of nowhere differentiability of sample functions of a Gaus-
gian process X is given: If there can be found a function ¢ such that

4.1) E[{X(s + k) — X(5)F] = ¢() ,

and if there exists a positive integer q such that
. h 7 -

4.2) lim {Z(h*)} /h=0

and finding a positive integer P

(4.3) lim sup | sup [4(k; ¢, 9)|} = 1/2q,

lt—slzp

where (h; t, s) = Correlation {X(t + k) — X(¢), X(s + h) — X(s)}, then
lin}tlsup X+ h) — X@)| = oo,
for all t in [0, 1], almost surely.

Since the present process is stationary, it is sufficient to consider
only in [0,1]. Using this proposition, we establish the following
theorem:

THEOREM 2. If the covariance function r of of Polya process X
satisfies (H), then the sample function are wnowhere differentiable
in [0, 1] almost surely.

Proof. Since it can be taken 2(1 — »(¢)) as #%(%),

(q/2)—1
W) = (2) v,

for a sufficiently small » by (H). This ensures (4.2) for each q > 2.
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Next, it must be found a positive integer p satisfying (4.3).
Since

sup J«Ir(h; t,8)| = sup = sup )hh!r(h; t, s,

[t—s|zp phLIt—s|<(p-+1
it is sufficient to check for each p

lim sup [ar(h; £, 8)] .

hl0 phsit—s|<(P+1)h

Then we have for ¢ and s in [ph, (p + 1)h), (s < ©),

(s 1, 5) = {s(n(t =2 —1>>h<t . —1>+S<h<t o +1>)h<t — +1)
() s

Since S(e) —»V™*¢(f) under the hypothesis (H) as ¢ — 0, we see that

Ar(h; t, s) is vanishing as h | 0. This ensures (4.3) for taking any
positive integer p. Thus the proof is completed.

5. Quadratic variations. For the process, the method of Klein
and Giné [6] yields the following:

THEOREM 3. Let {X(t); t€[0,1]} be a Polya process satisfying
the hypothesis (H). Let {m,}:., be a sequence of partitions of the
interval [0, 1]; w, = {0 = &» < ¢ < --- < iy, = 1}, such that
max{(t™ — t*): tM exw,} = o(l/log n), (n — ). Then, denoting

clmy)

B, = > {X(t") — X)),

i=1
we have almost surely

lim B, = V(f) .

Nn—300

The proof is quite same as in [6] which contributes to find a
sequence {¢, | 0} satisfying

S, PlIB, — E(B)| z el < =,

being based on the bound of Hanson and Wright (1971). Hence, only
some different points from the proof in [6] will be noted here. In
the proof, it necessitates to evaluate E[(X(¢{") — X(t™))(X({E™) —
X(@t™N]. This requires generally to consider the singurality of the
second derivatives of the covariance function. But for the present
process, which is stationary, it is easy to carry out it under the (H).



134 TAKAYUKI KAWADA

In fact, for any pair (¢, 7), by Schwarz’s inequality, E[(X(") —
XX (E) — X(E )] < B{(XE™) — X)) E{(XE) — X&) =
2(1 . ’i”(t“‘) t("l) ))1/2(1 ’I‘(t(") t;"i’l))m < K(t(m ti@l)l/z(t ») t("_'_) )1/2’ where
the constant K is relevant to the total variation V(f). It remains
to find the limit of E(B,):

c(my,
B(B,) = 3} BX(H) — X))

c(my, %
_ Z) 2(1 ,r(t( | tk 1)) /t(m — tl(c'n—)l) .

=1 t(%) t('rs_)l

Hence,

min 2(1 — (& — &Y 1)) < Z <t(n) — ™) < EQB,) ,
k t(’n) t(n)

() __ +(m) el7g)
max 2L P08~ B2 S — g = E(B,) .
=1

k M — Y,

Since 35t — ti",) = 1, the hypothesis (H) implies
lim E(B,) = V(f) .

This completes the proof.

6. Upper and lower class. This section aims only to restate,
in the case of Polya process X, the theorem in [8] which describes
the asymptotic behavior of the process.

Let M be the class of monotone, nondecreasing, and continuous
functions. A function ¢ in M is called a function of the upper class
with respect to the uniform continuity of X, if for almost all @ of
the random parameter in a probability space, there exists a 6(w) > 0
such that 0 < |t — s| < 6(w) implies

| X(t, w) — X(s, ®)| = ¢(1/¢ — sDE{(X(¢) — X(s))} .
This class is denoted by unif-U.

On the contrary, a function ¢ in M is called a function of the

lower class with respect to the uniform continuity of X, if for

almost all w there exists a sequence {t,(w);n =1,2, 3, --:}€[0, 1]
such that

| X(,) — X(t,0| > ¢(1/1t, — t, DE"{(X(t,) — X(¢,-)%

as |t, — t,_,] =0, (w — o). This class is denoted by unit-L. Then
we have

THEOREM 4. Let X be a Polya process satisfying the hypothesis



SAMPLE FUNCTIONS OF POLYA PROCESSES 135

(H). Assume that the covariance function +(t) is convex or concave
i (0, 8) for a sufficiently small 6. If, for ¢ in M, the integral

|80 exp(—s@y2)at

converges, then the ¢ belongs to unif-U.

On the contrary, if the above integral diverges under the sssump-
tion that »(t) is convex in (0, 8) for a sufficient small 6, then the ¢
belongs to unif-L.

The adaptation of [8] to the other properties of Polya process;
the local continuity, the “iterated logarithm”-typed properties ete.,
are all omitted.
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