Pacific Journal of Mathematics

COMMON FIXED POINTS OF NONEXPANSIVE MAPPINGS BY ITERATION

PETER K. F. KUHFITTIG

Vol. 97, No. 1

January 1981

COMMON FIXED POINTS OF NONEXPANSIVE MAPPINGS BY ITERATION

PETER K. F. KUHFITTIG

The purpose of this paper is to present an iteration scheme which converges strongly in one setting and weakly in another to a common fixed point of a finite family of nonexpansive mappings.

Let X be a Banach space and C a convex subset of X. Suppose $\{T_i: i = 1, 2, \dots, k\}$ is a family of nonexpansive self-mappings of C. Define the following mappings: set $U_0 = I$, the identity mapping; then for $0 < \alpha < 1$ let

$$egin{aligned} U_1 &= (1-lpha)I + lpha T_1 U_0 \ , \ U_2 &= (1-lpha)I + lpha T_2 U_1 \ , \ & \ldots \ U_k &= (1-lpha)I + lpha T_k U_{k-1} \ . \end{aligned}$$

THEOREM 1. Let C be a convex compact subset of a strictly convex Banach space X and $\{T_i: i = 1, 2, \dots, k\}$ a family of nonexpansive self-mappings of C with a nonempty set of common fixed points. Then for an arbitrary starting point $x \in C$, the sequence $\{U_k^n x\}$ converges strongly to a common fixed point of $\{T_i: i = 1, 2, \dots, k\}$.

REMARK 1. The sequence $\{U_k^n x\}$ can be expressed in the following form: let x_0 be an arbitrary element in C and let

$$egin{aligned} x_1 &= (1-lpha) x_0 + lpha T_k U_{k-1} x_0 \; ext{,} \ x_2 &= (1-lpha) x_1 + lpha T_k U_{k-1} x_1 \; ext{,} \end{aligned}$$

and, in general,

$$(*)$$
 $x_{n+1} = (1 - \alpha)x_n + \alpha T_k U_{k-1}x_n$, $n = 0, 1, 2, \cdots$.

Observe that for k = 1, the sequence (*) becomes

(1)
$$x_{n+1} = (1 - \alpha)x_n + \alpha T_1 x_n$$

which converges to a fixed point of T_1 by Edelstein's theorem [3]. The sequence (*) is clearly a generalization of this result.

Proof of Theorem 1. We first note that the mappings U_j and $T_j U_{j-1}$, $j = 1, 2, \dots, k$, are nonexpansive and map C into itself. It

is also easy to check that the families

 $\{U_1, U_2, \cdots, U_k\}$ and $\{T_1, T_2, \cdots, T_k\}$

have the same set of common fixed points.

Since the sequence (*) has the same form as (1), $\{U_k^n x\}$ converges to a fixed point y of $T_k U_{k-1}$ by Edelstein's theorem. We wish to show next that y is a common fixed point of T_k and $U_{k-1}(k \ge 2)$. To this end we first show that $T_{k-1}U_{k-2}y = y(k \ge 2)$. Suppose not; then the closed line segment $[y, T_{k-1}U_{k-2}y]$ has positive length. Now let

$$z = U_{k-1}y = (1 - \alpha)y + \alpha T_{k-1}U_{k-2}y$$
.

By hypothesis there exists a point w such that $T_1w = T_2w = \cdots = T_kw = w$. Since $\{T_i\}$ and $\{U_i\}$ have the same common fixed points, it follows that $T_{k-1}U_{k-2}w = w$. By nonexpansiveness

$$(2) || T_{k-1}U_{k-2}y - w || \le || y - w ||$$

and

$$||T_kz-w|| \leq ||z-w||.$$

So w is at least as close to $T_k z$ as to z. But $T_k z = T_k U_{k-1} y = y$, so that w is a least as close to y as to $z = (1 - \alpha)y + \alpha T_{k-1}U_{k-2}y$. Since X is strictly convex, we conclude that

$$\|\,y-w\,\|<\|\,T_{_{k-1}}U_{_{k-2}}y-w\,\|$$
 .

This contradicts (2), so that $T_{k-1}U_{k-2}y = y$. It now follows from

$$U_{k-1} = (1 - \alpha)I + \alpha T_{k-1}U_{k-2}$$

that $U_{k-1}y = (1 - \alpha)y + \alpha y = y$ and $y = T_k U_{k-1}y = T_k y$. Consequently, y is a common fixed point of T_k and U_{k-1} .

Since $T_{k-1}U_{k-2}y = y$, we may repeat the argument to show that $T_{k-2}U_{k-3}y = y$ and that y must therefore be a common fixed point of T_{k-1} and U_{k-2} . Continuing in this manner, we conclude that $T_1U_0y = y$ and that y is a common fixed point of T_2 and U_1 . Thus y is a common fixed point of $\{T_i: i = 1, 2, \dots, k\}$.

REMARK 2. If the family $\{T_i: i = 1, 2, \dots, k\}$ is commutative, then the assumption that the set of common fixed points is nonempty may be omitted (DeMarr [2]).

THEOREM 2. If X is a uniformly convex Banach space satisfying Opial's condition (in particular, if X is a Hilbert space) and C a closed convex subset of X, and if the family of mappings $\{T_i: i = 1, 2, \dots, k\}$ satisfies the conditions in Theorem 1, then for any $x \in C$ the sequence $\{U_k^n x\}$ converges weakly to a common fixed point.

Proof. Since $T_k U_{k-1}$ is a nonexpansive self-mapping of C, the sequence $\{U_k^m x\}$ converges weakly to a fixed point y of $T_k U_{k-1}$ (Opial [4]). By the argument in the proof of Theorem 1, y is a common fixed point of $\{T_i\}$.

Suppose, in addition, that C is bounded and the family $\{T_i\}$ commutative. Then, since X is strictly convex and reflexive, the assumption that the set of common fixed points is nonempty may again be omitted (Browder [1]).

Since Theorem 2 remains valid for C = X, the iteration scheme can be applied to the solution of systems of equations of the type

(3)
$$x - S_i x = f_i, \quad i = 1, 2, \dots, k$$
,

where each S_i is a nonexpansive self-mapping of X and each f_i a given element of X. To do so, it is sufficient to consider the family

$$T_i x = f_i + S_i x$$
, $i = 1, 2, \cdots, k$,

each member of which is also a nonexpansive self-mapping of X, since x is a solution of the system (3) iff x is a common fixed point of $\{T_i\}$.

If C is a proper subset of X (as in Theorem 1) and each S_i a self-mapping of C, then the above procedure applies provided that each T_i maps C into itself.

References

1. E. F. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U. S. A., 54 (1965), 1041-1044.

2. R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math., 13 (1963), 1139-1141.

3. M. Edelstein, A remark on a theorem of M. A. Krasnoselskii, Amer. Math. Monthly, 73 (1966), 509-510.

4. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.

Received May 27, 1980.

MILWAUKEE SCHOOL OF ENGINEERING MILWAUKEE, WI 53201

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California

Los Angeles, California 90024

HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

R. FINN and J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 97, No. 1 January, 1981

Charles A. Asmuth and Joe Repka, Tensor products for $SL_2(\mathfrak{k})$. II.
Supercuspidal representations1
Joseph Barback, On finite sums of regressive isols19
Matthew G. Brin and Daniel Russell McMillan, Jr., Generalized
three-manifolds with zero-dimensional nonmanifold set
Kun Soo Chang, Converse measurability theorems for Yeh-Wiener space 59
Christopher Brian Croke, A "maximal torus" type theorem for complete
Riemannian manifolds
Gustave Adam Efroymson, Sums of squares in planar Nash rings75
John Robert Fisher, Axiomatic radical and semisimple classes of rings81
Betty Kvarda, Consecutive integers for which $n^2 + 1$ is composite
Roosevelt Gentry, New diagram proofs of the Hausdorff-Young theorem
and Young's inequality97
Patrick M. Gilmer, Topological proof of the <i>G</i> -signature theorem for <i>G</i>
finite
Chung Wei Ha, A noncompact minimax theorem115
James J. Hebda, Manifolds admitting taut hyperspheres
Takayuki Kawada, Sample functions of Pólya processes125
Peter K. F. Kuhfittig, Common fixed points of nonexpansive mappings by
iteration
James Thomas Loats and Judith Roitman, Almost rigid Hopfian and dual
Hopfian atomic Boolean algebras141
Roger McCann , On embedding semiflows into a radial flow on l_2
John McDonald, Closed orbits of convex sets of operators on the disk
algebra
Mark D. Meyerson, Convexity and the table theorem
Arnold William Miller, Generic Souslin sets
Takemi Mizokami, On the closed images of paracomplexes
Jagannadham Venkata Pakala and Thomas Stephen Shores, On
compactly packed rings 197
Andrew Pletch, Strong completeness in profinite groups
Wilbur Carrington Whitten, Inverting double knots 209
James Juei-Chin Yeh, Existence of strong solutions for stochastic
differential equations in the plane