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The purpose of this paper is to present an iteration
scheme which converges strongly in one setting and weakly
in another to a common fixed point of a finite family of
nonexpansive mappings.

Let X be a Banach space and C a convex subset of X Suppose
{Tt\ i = 1, 2, , k) is a family of nonexpansive self-mappings of C.
Define the following mappings: set Uo = /, the identity mapping;
then f or 0 < a < 1 let

Ux = (X - a)I + aTJJ, ,

THEOREM 1. Let C be a convex compact subset of a strictly
convex Banach space X and {Tt: i — 1, 2, , k) a family of non-
expansive self-mappings of C with a nonempty set of common fixed
points. Then for an arbitrary starting point xeC, the sequence
{UkX} converges strongly to a common fixed point of {ΪVi =
1,2, ...,fc}.

REMARK 1. The sequence {Uίx} can be expressed in the following
form: let x0 be an arbitrary element in C and let

x1 = ( l - a)x0

x2 = (1 - a)x1

and, in general,

( * ) xn+ι = (1 - a)xn + aTkUk^xn , n = 0, 1, 2, .

Observe that for k = 1, the sequence (*) becomes

(1) xn+1 = (1 - a)xn + α T X ,

which converges to a fixed point of 2\ by Edelstein's theorem [3].
The sequence (*) is clearly a generalization of this result.

Proof of Theorem 1. We first note that the mappings Uά and
TjUj^, j = 1, 2, , fc, are nonexpansive and map C into itself. It
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is also easy to check that the families

{Ul9 U2, . .-, Uk) a n d {TlfT2, . . . , Tk)

have the same set of common fixed points.
Since the sequence (*) has the same form as (1), {Ukx} converges

to a fixed point y of TkUk^ by Edelstein's theorem. We wish to
show next that y is a common fixed point of Tk and Ϊ7fc_i(fc ^ 2 ) . To
this end we first show that Tk_JJk_2y — y(k ^ 2). Suppose not; then
the closed line segment [y, Tk_1Uk_2y'\ has positive length. Now let

£ = Uk_λy = (1 - ά)y + aTk^Uk_2y .

By hypothesis there exists a point w such that Tγw — T2w = =
I^w = w. Since {ΓJ and {C/J have the same common fixed points,
it follows that Tk_JJk_2w — w. By nonexpansiveness

( 2 ) WT^U^y - w\\ ^ \\y-w\\

and

\\Tkz-w\\ £ \\z-w\\ .

So w is at least as close to Tkz as to z. But Tkz = TkUk_λy = ?/, so
that w is a least as close to 2/ as to z = (1 — α)s/ + &Tk_JJk_2y.
Since X is strictly convex, we conclude that

111/-w | | < II T , - ! ^ - ^ - w | | .

This contradicts (2), so that Tk_JJk_2y = y. It now follows from

that C/ îi/ = (1 — a)y + ay = y and 7/ = TkUk_{y = Γ ^ . Consequently,
7/ is a common fixed point of jΓfc and ϊΛ_i.

Since Tk_J3k_2y — y, we may repeat the argument to show that
Tk_2Uk^y = ?/ and that 7/ must therefore be a common fixed point
of 2Vi and Uk_2. Continuing in this manner, we conclude that
TLUoy — y and that y is a common fixed point of Γ2 and U^ Thus
2/ is a common fixed point of {2V i = 1, 2, ••-,&}.

REMARK 2. If the family {2V i = 1, 2, ••-,&} is commutative,
then the assumption that the set of common fixed points is nonempty
may be omitted (DeMarr [2]).

THEOREM 2. If X is a uniformly convex Banach space satisfying
OpiaΓs condition {in particular, if X is a Hilbert space) and C a
closed convex subset of X, and if the family of mappings {T^ i =
1, 2, ••-,&} satisfies the conditions in Theorem 1, then for any xeC
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the sequence {Uΐx} converges weakly to a common fixed point.

Proof, Since TkUk^x is a nonexpansive self-mapping of C, the
sequence {Uΐx} converges weakly to a fixed point y of TkUk_x (Opial
[4]). By the argument in the proof of Theorem 1, y is a common
fixed point of {TJ.

Suppose, in addition, that C is bounded and the family {ΓJ
commutative. Then, since X is strictly convex and reflexive, the
assumption that the set of common fixed points is nonempty may
again be omitted (Browder [1]).

Since Theorem 2 remains valid for C = X, the iteration scheme
can be applied to the solution of systems of equations of the type

(3) x-Stx=fi9 ί = l,2, .,k,

where each Si is a nonexpansive self-mapping of X and each ft a
given element of X. To do so, it is sufficient to consider the family

Tix=fi + Six, i = 1 , 2 , . • • , & ,

each member of which is also a nonexpansive self-mapping of X,
since x is a solution of the system (3) iff x is a common fixed point
of {Tt}.

If C is a proper subset of X (as in Theorem 1) and each St a
self-mapping of C, then the above procedure applies provided that
each Ti maps C into itself.
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