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Let = be a semiflow on a separable metric space X such
that the negative escape time function is lower semiconti-
nuous and xz—2xrt is a one-to-one mapping for each tc R*.
If = has a globally uniformly asymptotically stable critical
point, then = can be embedded into a radial flow on [..
This generalizes known results on embedding flows or semi-
flows into radial flows on [,.

1. Introduction. In [3] L. Janos showed that a semiflow 7 on
a compact metric space X satisfying

(i) -mt is one-to-one for every te R*

(ii) there is a pe X such that N{Xnt:t =0} = {p} can be
embedded into a radial flow on l,. In [2] M. Edelstein generalized
this result to

THEOREM 1. Let w be a semiflow on a separable metric space
X satisfying

(a) for each te R*, x —axnt: X — X is a homeomorphism, of X
onto a closed subset of X,

(b) there is a pe X such that for each mneighborhood U of p
there is a T e R* such that Xnt C U for all t = T.
Then m can be embedded into a radial flow on I,.

Evidently properties (a) and (b) generalize properties (i) and (ii)
respectively. Note that property (b) imposes a type of compactness
on the semiflow. For example, a radial flow on [, can be embedded
into itself trivially, but such a flow does not have property (b).

In this paper we further generalize properties (a) and (b) to

(¢) x— xmt is one-to-one for each te R,

(d) the negative escape time function is lower semicontinuous,

(e) = has a globally uniformly asymptotically stable ecritical

point p.
We will show (Corollary 8) that property (a) implies properties (c)
and (d). Evidently property (b) implies property (e). Property (e)
imposes a type of local compactness on the semiflow. Notice that
a radial flow on [, does satisfy property (e).

The principal result of this paper, Theorem 7, generalizes every
other result known to the author concerning embedding flows or
semiflows into radial flows on [,.
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2. Notation and definitions., Throughout this paper R and
R* will denote the reals and nonnegative reals respectively. A
flow on a topological space X is a continuous mapping 7: X X R—X
such that (where znt = n(z, t)) 2n0 =« for all xe X and (ant)ws =
xn(t + s) for all xe X and ¢, seR. If R is replaced by R* in the
previous sentence, then x is called a semiflow. A point p of X is
called a critical point of z if pmt = p for all te R (or te R" if & is
a semiflow). A compact subset M of X is said to be stable with
respect to mw if for any neighborhood U of M there is a neighbor-
hood V of M such that VzR+*c U. A compact subset M of X is
said to be a global attractor if for any neighborhood U of M and
any x€X there is a d € R* such .that zz[d, o) CU. The compact
set M is called a global uniform attractor if it is a global attractor
and if there is a neighborhood U of M such that for any neighbor-
hood Vc U of M there is a ceR* such that Uznfe, o) V. A
stable global (uniform) attractor is said to be globally (uniformly)
asymptotically stable.

A continuous function L: X — R* is called a Liapunov function
for a compact subset M of X if L(xxzt) < L(x) for every ¢ X — M
and 0 < ¢, L(xnt) -0 as t— oo for every zc X, and L(x) =0 if
xeM. Let M be a compact asymptotically stable subset of X. A
straightforward argument shows that if x€e X — M and if U is any
neighborhood of M, then there is a neighborhood V of z and a
T > 0 such that Vz[T, ) c U. With this observation the proof of
the following theorem is essentially identical with that of Theorem
10 in [1].

THEOREM II. A compact subset M of a metric space X is
globally asymptotically stable with respect to a semiflow © if and
only if there is Liapunov function for M.

Let X and Y be topological spaces on which are defined flows
(semiflows) 7= and p respectively. We say that 7 can be embedded
into p if there is a homeomorphism % of X onto a subset of Y
such that h(xmt) = h(x)ot for every xc X and te R(tc R").

The set of all sequences z = {x, @, -- -, Z,, ---} of real numbers
such that >, #% converges is denoted by [,. If addition and scalar
multiplication are defined coordinatewise and if a norm is defined
by llz|| = Gz 22)Y%, then [, is a real Banach space. A flow p on
l, is called a radial flow if there is a ¢<(0, 1) such that zpt = ¢’z
for every (z, ) el, X R.

Let 7= be a semiflow on X. The funection a: X — [ — o, 0] defined
by «a(x) = inf {—¢: there exists ye X with yrt = a2} is called the
negative escape time function. Throughout this paper we shall
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assume that « is lower semicontinuous, i.e., a(zx) < lim,., inf a(y).
It is an elementary exercise to show that a(xzt) = a(x) —t for all
t=0 and rze X.

3. The embedding. Henceforth, = shall denote a semiflow on
a separable metric space X satisfying

(1) o — xxt is one-to-one for each te R,

(2) the negative escape time function is lower semicontinuous,

(83) 7w has a globally unformly asymptotically stable critical
point p.
Also, U shall denote a neighborhood of p such that for any neigh-
borhood V c U of p, there is a T > 0 such that Uz[T, «)c V.

Let t<0 and € X. Since -m(—t) is one-to-one there is at
most one y € X with yn(—t) = 2. If such a y exists then we shall
denote this y by axt. It is a straightforward exercise to show that
if s,te R and x e X, then (xnt)rs = xxw(t + s) whenever each side of
the equality is defined. Suppose that {x;} and {t,} are sequences in
X and R converging to x ¢ X and ¢ € R respectively. Using property
2 it is easy to show that if x,7¢, is defined for each 7, then zxt is
defined and x,xt, — ant as 7 — oo,

LEMMA 1. If am(a(x), 0] € U, then — « <a(x).

Proof. Let Vc U be a neighborhood of p such that VaR*=V
and ¢ V. Then an(a(x),0lN V=¢. Let T >0 be such that
UrTc V. Then an(a(x) + T, <) V. In order that this be con-
sistent with az(a(x), 01N V = ¢, we must have a(x) = — .

LEMMA 2. Let o be a semiflow on a metric space Z. If

(1) the megative escape time function v is lower semicontinu-
ous,

(ii) each trajectory contains a start point, i.e., for each x€Z
there 1s a y € Z such that yo(—v(x)) = z,
then Zwt is a closed subset of Z for each t = 0.

Proof. Let t =0 and let{xz} be a sequence in Z such that
x,0t —y for some yeZ. Then ~v(x,0t) < —t for every ¢ so that
v(y) £ —t. By (ii) there is a z€ Z such that zo(—v(y)) = y. Then
y = (zx(—v(y) — t))ot € Zot. It follows that Zot is a closed subset
of Z.

Let L be a Liapunov function for p (Theorem II) and let A be
any number in the range of L such that L~'([0, A]) c U. Set



154 ROGER C. MCCANN

Y ={xeL([0, \]): a(x) < —1 and 2x(—1, ) L]0, »])}

and let ¢ denote the semiflow obtained by restricting = to ¥ x R*.
Let g denote the negative escape time function with respect to o.
We will show that o satisfies the hypotheses of Theorem I.
Hence, ¢ can be embedded into a radial flow on I,., We will then
extend this embedding to an embedding of = into a radial flow.

LEMMA 3. For every x € Y there is a y € Y such that yo(—pB(x))=2x.

Proof. There are two cases to consider: zz(a(x), ) < L7([0, A))
and xzm(a(x), o) N L™*(\) # ¢. In the latter case there is a unique
zeam(a(x), =) N L™*(\) and a unique ¢t € R such that zzt = . Since
xeY we must have 1 < ¢. Then g(x) = —t + 1. Set y = zxl. Then
yeY and yo(—pR®x)) = yr(—L%)) = rl)x(t — 1) = znt =x. Now
suppose z7m(a(x), «<) C L7*([0, »)). Then azw(alx), <) c U so that, by
Lemma 1, — o <a(x). Since xre€¢Y we must have a(x) £ —1. Let
yeam(a(x), =) be such that yza(—a(x) —1) =2 Since a(x) =
a(yr(—a(x) + 1)) = ay) + a(x) + 1 we have a(y) = —1. If y = znt
for some ¢ >0 then —1 = a(y) = a(zxnt) = a(z) — t so that a(z) =
t—1> —1. It follows that B(z) = a(x) + 1 and that yo(—pBx)) = x.
This completes the proof.

LEMMA 4. Let {x,} be a sequence such that x, — x for some x € X.
If there exists a t€ R such that xwte L~*(\), then either ¢ =< lim inf
a(x;) or there are a subsequence {x;} of {x;} and a sequence {t;} in R
such that x;wt; € L7(\). In the latter case t; —t.

Proof. Suppose liminf a(x,) <t. Let {x;} be a subsequence of
{x;} such that a(z,;) — liminf a(x;). For any 6¢€(0, ¢t — lim inf a(x,))
eventually a(x;) <t — 6. Also a(x) =t— 0§ because a(x) < liminf
a(x;). Since L(xzm(t — 0)) > L(xwt) = N > L(xn(t + 6)) we have
L(zz(t — 0)) > N > L(x;m(t + 9)) eventually. Hence, there are ¢;¢
(t — 8,t + 0), eventually, such that L(z,xt;) = . Since 6 can be
chosen arbitrarily small we must have ¢; — .

LEMMA 5. B is lower semicontinuous.

Proof. Let xeY and let {x;} be a sequence in Y such that z; — .
Let {x;} be any subsequence of {x,} such that gB(x;,) » 3 for some
Be[—co,0]. There are two cases to consider: zzt e L~'(\) for some
teR and zzn(a(x), ) c L0, N)). If zxte L*(\) for some ¢, then
by Lemma 4 either a(x) < ¢ < lim inf a(x;) or there are a subsequence
{z.} of {x;} and a sequence {f,} in R such that ¢, —¢ and a7t e
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L=(\). If ¢t < liminf a(x;), then B(x) =t + 1 and B(z;) = a(x;) + 1
so that B(x) < lim inf B(x;) = 8. If there are a subsequence {x,} of {x,}
and a sequence {{,} in R such that ¢, — ¢ and x,7t, € L~*(\), then g(z) =
t+1 and B(x,)=t,+1. Then B(x)=lim B(x,)=g8. Thus if xzxte L*(\),
then B(x) < B. It follows that g(z) < lim inf B(x;) whenever ante
L='(») for some teR. Now suppose that xzm(a(z), )< L7([0, \)).
Then pg(x) = a(x) + 1. Again there are two cases to consider:
x,w(alx,), =)< L0, ) for every 4 and there exist a subsequence
{x,} of {x;} and a sequence {s,} in R such that z,7s,c L~*(\) for
every n. In the former case we have B(x;,) = a(x,) + 1 and B) <
lim inf B(x,) since a is lower semicontinuous. In the latter case, let
V < U be a neighborhood of p such that z¢ VzR* and let T > 0 be
such that Uzn[T, «)c V. Then L7(\7#[T, «)cC V and we must
have s,€[0, T'] for all n sufficiently large. Let s be any accumula-
tion point of {s,} and let {s;} be a subsequence of {s,} such that
s;—8. Then =x;ms;€ L7'(\) and ux;ws; — aws. Hence, azmse L7'(\)
which contradicts our assumption that az(a(x), ) L0, n)). It
follows that @(x) < lim inf 8(x,) whenever xzrm(a(x), o) L0, \)).
Combining this with the result B(z) < lim inf B(x;) whenever aznte
L=(\) for some te R obtained earlier in the proof, we conclude that
B is lower semicontinuous.

Collecting together the above results we have that

(i) o is a semiflow on the separable metric space Y,

(ii) if V is a neighborhood in Y of p, then there is a 7 >0
such that Yo[T, «)c V, (This follows directly from the facts that
Y c U and o is a restriction of x.)

(iii) Yot is a closed subset of ¥ for every ¢ = 0 (Lemmas 3, 5,
and 2).

In light of Theorem I the semiflow ¢ on Y can be embedded into
a radial flow p on l,. Let ¢e(0,1) be such that xpt = ¢z and let
h:Y — 1, be a homeomorphism of Y onto A(Y) such that A(xeot) =
h(x)pt for every (x,t)eY x R*. Since ¢ is a restriction of 7 we
have h(xzzt) = h(z)ot for every (z,t)e Y X R*. Now define a mapp-
ing H: X — 1, by

H(x) = h(zzt)o(—1)

where te R* is such that zzte Y. (H will be shown to be well
defined in the following lemma.)

LEMMA 6. H is a homeomorphism of X onto H(X).

Proof. We will first show that H is well defined. Clearly for
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every z € X, there is a ¢ = 0 such that antc Y. Moreover, if xnte
Y, then zz(t 4+ s)e Y for every s = 0. In order to show that H is
well defined it suffices to show that h(zmt)o(—t)=h(xx(t+s))o(—t—s)
whenever xz7tcY and s=0. Since znteY and s =0 we have
rMar(t + 8)) = h((xnt)ws) = h(zwt)ps. Hence h(zzn(t + s))o(—t — s) =
(h(xmt)os)o(—t — s8) = h(xmt)o(—t). The mapping H is well defined.
We will now show that H is one-to-one. Suppose that H(x) =
h(zrt)o(—t), H(y) = h(yms)o(—s), and H(x) = H(y). Without loss of
generality we may assume that ¢ =s. Then H(y) = h(ynt)o(—t)
since yxteY whenever ynseY and s < ¢. Since H(x) = H(y) we
must have h(xmt) = h(ymt). Recalling that & is a homeomorphism
we have xzt = ywt so that x = ¥ since -zt is one-to-one. The map-
ping H is one-to-one. Next we will show that H is continuous.
Let xe X and let {x,}] be a sequence in X such that z, —» 2. Let
te R" be such that L{zzt) < n. Then a2zt + 1)e Y. Also for all ¢
sufficiently large L(xzt) <» and 27 -+ 1)eY. Then H(z,) =
hMazt + 1))o(—t — 1) = h(xz(t + 1))o(—t — 1) = H(x). Hence, H is
continuous. Finally we will prove that H~' is continuous. Let
ye X and let {y,} be a sequence in X such that H(y,) — H(y). Then
there exist ¢, ¢, € BT such that H(y,) =h(ywt)o(—t,) and H(y)=h(yxt).
Let s, =inf{seR":ymscY}. We will show that {s)} is bounded.
Suppose not. Then there is a subsequence {s,} of {s,} such that s;—co.
If y,eL7(J0, \]), then s, <1. Hence, we may assume 1 < s; and
y; ¢ L7({0, n]) for every j. Then y;x(s; —1)e L™*(\). Note that
H(y) «— H(y;) = h(y;ms;)o(—s;) = ¢~"h(y,ms;). Since s;— o and ce
(0,1) we have ¢=*/— co. In order that ¢—*h(y;zs;) — H(y) we must
also have h(y;zs;) —0 where 0 is the origin in l,. Since % is a
homeomorphism y;xs; — p so that y,z(s; — 1) — p. This is impossible
because y,;7(s;—1) € L7'(\) and L(p)=0. Hence {s;} must be bounded.
Without loss of generality we may suppose that 0 < s, < ¢ for every
1. Then H(y,) = hyzt)p(—1t) — h(yrt)o(—t) = H(y) so that h(yt)—
h(yzt). Since h is a homeomorphism, y,wt — yzt and we have y,—y.
Hence, H~' is continuous and H is a homeomorphism of X onto

H(X)cCl,.

THEOREM 7. Let w be a semiflow on a separable metric space
X such that the negative escape time function is lower semicontinu-
ous and -wt s one-to-one for each t€ R*. If mw has a globally uni-
formly asymptotically stable critical point, then ™ can be embedded
wnto a radial flow on I,

Proof. 1In light of Lemma 6, we need only show that H(xws)=
H(x)os for every (x,s)e X X R*. Let xcX and ¢ = 0 be such that
arteY. Then (azws)nt =an(t +s)eY and we have H(xws)=
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h((xms)mt)o(—1t) = h((ant)ws)o(—1t) = (h(wrt)ps)o(—t)=(h(xmt)o(—1))ps =
H(x)ps.

COROLLARY 8. ([2, Theorem 1|.) Let @ be a semiflow on a
separable metric space having the properties

(i) x—xxt is a homeomorphism of X onto a closed subset of
X for each te R*,

(ii) there is a pe X such that for awmy neighborhood U of p
there is a Te RT with XntC U for all t = T.
Then 7 can be embedded into a radial flow on I,.

Proof. Clearly (i) and (ii) imply that -zt is one-to-one for all
te B* and p is globally uniformly asymptotically stable respectively.
It remaing to show that (i) implies that the negative escape time
funetion « is lower semicontinuous. Suppose that a is not lower
semicontinuous. Then there exist xe€ X, 6 > 0, and a sequence {x;}
in X such that 2, —2 and a(x,) < alx) —9d for every <. Thus
xz,7w(a(x)—9) is defined for every ¢. Then (zx(a(x)—06))w(—alx)+6)=
x, — x so that x ¢ Xn(—a(x) + 6) = Xn(—a(x) + §) since Xxt is closed
for every ¢ = 0. Then there exists ze€ X such that zx(a(x) — d)=x.
This is impossible because a(x) — ¢ < a(x) and «a(x) = inf {—¢: there
exists ye X with ynt = z}. Therefore, we must have that a is
lower semicontinuous. The desired result now follows from Theorem 7.

In the proof of Corollary 8 we showed that if Xzt is a closed
subset of X for all ¢t Rt then the negative escape time function «
is lower continuous. The converse of this is not valid. Let X =
[0,1) and define 7: X X R— X by zat =e¢'z. Evidently ©= is a
semiflow on X. The negative escape time function is defined by

Ing if x+0

=1 itw—o0.

Thus « is lower semicontinuous. However Xzl = [0, e¢™") is not a
closed subset of [0, 1). Thus the lower semicontinuity of « does not
imply that Xzt is a closed subset of X for every te R*.

COROLLARY 9. (Theorem 5 of [4].) Let @ be a flow on a separable
metric space which has a globally asymptotically stable critical point
p. Then © can be embedded into a radial flow on I, if and only if
p 18 globally uniformly asymptotically stable.

Proof. Since w is a flow x — xzt is one-to-one for every te R*
and a(x) = —o for every z¢ X. If p is globally uniformly asymp-
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totically stable, then, by Theorem 7, 7= can be embedded into a
radial flow on 4. The converse follows easily since the origin in
4 1s globally uniformly asymptotically stable with respect to a radial
flow.
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