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In "The Table Theorem" ([1]), Roger Fenn proves that
one can "balance" a square "table" on any "hill". One
of the hypotheses he suggests relaxing is that the hill has
convex support. We show here the necessity of such a
hypothesis.

More precisely, Fenn showed that if D c R2 is a compact,
convex disk and /: R2 — • R is a map which is zero outside D and
nonnegative inside D, then, given s > 0, there is a square of side
s in j£2 with center in D such that / takes the same values at all
the vertices of the square. Below, we shall give an example where
D is not convex and the conclusion fails to hold.

The two following lemmas will be useful:

LEMMA 1. Suppose KczR2 is compact and ε > 0 is given. Then
there is a 3 > 0 such that if all the points of Kf are within 3 of
K, then any square with vertices in Kf has each of its vertices
within e of a point of K such that these 4 points of K form the
vertices of a square. Four copies of a single point are viewed as
the vertices of a (degenerate) square.

Proof. Each square in R2 corresponds to a point in R8. The
square with vertices (xl9 yx), (xz, y2), (x3, yz), and (a?4, yj, traveling
counterclockwise around the square, is given by equations: xz—χ2-\-
Vi — V2, y$ = y2 + %2 — %i, XA = ffi + Vi ™ Vzt a n d y4 = yx + x2 — xλ.

Thus all squares are represented by the 4-dimensional flat, F, in
R8 which is the intersection of these 4 hyperplanes. Also represented
are degenerate squares.

Let NdRs be the set of points within ε/2 of K* Π F (K4 = Kx
K x K x K). Let δ > 0 be smaller than ε/4 and smaller than half
the distance from F to K*\N. Let V be a square with vertices
within δ of K. Then in R8, V is represented by a point v e F
within 23 < ε/2 of a point k of K\ Now v is more than 23 from
K'\N so keK* Π N. Thus k is within ε/2 of K* Π F. Hence v is
within ε of K'ΠF. Π

The next lemma follows from the fact that an angle greater
than 90° with vertex at the center of a square must contain a
vertex of the square.
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LEMMA 2. Suppose at every point of region D there is the
vertex of an angle greater than 90° with an ε-radius sector in the
interior of D (except perhaps for the vertex of the angle). Then
for δ < V 2 ε, if a square of side δ has center in D, at least one
vertex of the square is in the interior of D. •

We now construct the promised example.

EXAMPLE. A compact disk D czR2, a map f:R2-+R zero out-
side D and nonnegative inside D, and s > 0, such that if / takes
the same values on the vertices of a square of side s then the
square's center is outside D.

Construction. Start with the unit circle in the plane. For
ε > 0 small add the two segments from (—ε, 0) to the circle which
make angles of ±ε with the positive cc-axis. Throw out the small
arc of the circle subtended by the angle the two segments deter-
mine. "Round off" the two corners on the unit circle with arcs of
small circles so that the resulting curve, C:

( i ) is strongly starlike from any point ( — 7, 0) with ε < 7 < 1
and

(ii) the points from but not including (—ε, 0) to the origin lie
outside C.

Note that the above can be achieved so that the only squares
with all 4 vertices on C have center at the origin and vertices on
the unit circle. One way to check this is to start with the unit
circle and a single radius. On this compact set the claim is true.
Then, using Lemma 1, we only need check for new squares which
are very close to the old ones or very small.

Next, using Lemma 2, choose a small s > 0 so that no square
of side 8 can have its center on or inside C and all its vertices on
or outside C.

The boundary of D(dD) is C translated to the right by 7, ε <
7 < 1 (to be determined later). For 0 <; r ^ 1, the level curve on
which / takes value r is given by multiplying the points of 3D
(treating them as vectors) by 1 — r. So the level curves are all
similar to C. By condition (i) above, this will indeed give us a
continuous function. Now the only nonzero level on which our
"table can balance" has 1 — r (the radius of the circle about the
level curve) equal to s/VΊϊ, i.e., r = l — s/V 2. For this r we
choose 7 so that ε < 7 < ε/r and hence (1 — r)y > 7 — ε. So the
only center of a square "balancing" at a nonzero level lies over a
point outside D (at ((1 — r)τ, 0)).
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Thus the only "tables which balance" on the graph of / are at
the zero level or r = 1 — sjλ/ 2 level, and in both cases the centers
lie outside D. •

By putting the level curves at heights g(r) for appropriate g,
rather than r, we could have permitted a smoothing out of C at
( — ε, 0). In fact we could have made 3D and / as smooth as desired.
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