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GENERIC SOUSLIN SETS

ArRNOLD W. MILLER

By iterated forcing we create generic Souslin sets, which
we use to answer questions of Ulam, Hansell, and Mauldin.
For X a topological space a set Y & X is analytic in X (also
called Souslin in X or X! in X) iff there are Borel sets B,
for sc€w*® such that:

Y=U N Brta.
few? n<w

For X = 2% (the Cantor space) a set Y & X is analytic iff it
is the projection of a Borel subset of 2 X 2°. Given R C
P(X) (the power set of X) let B(R) be the smallest family
of subsets of X including R and closed under countable
union and complementation (i.e., the s-algebra generated by
R). If X is a topological space and R the family of open
sets then B(R) is the family of Borel subsets of X. The
following question was raised by Ulam.

(1) Does there exist B < P(2°) such that R is countable
and every analytic set in 2° is an element of B(R)?

Rothberger showed that assuming CH there is such a R.
We will show that it is consistent with ZFC that there is
no such R.

(2) Does there exist a separable metric space X in which
every subset is analytic but not every subset is Borel?

This was raised by R. W. Hansell. Clearly CH implies
no such X exists. We show that it is consistent with ZFC
that such a X exists.

Let R={A X B: A, B < 2¢}, the abstract rectangles in the
plane., Let S(R) be the family of subsets of 2° X 2¢ obtained
by applying the Souslin operation to sets in B(R). The next
question was asked by D. Mauldin.

(3) Deoes S(R) = P(2° X 2¢) imply B(R) = P(2° x 2°)?

We shoew that the answer to this question is no.

Preliminaries. Recall the following definitions:

(1) w=1{0,1,2,---} and Vv < o, n = {m|m < n};

(2) w"={s|s:n— o

(3) for sew™ and n» < @, s"n is that t e @™ such that ¢t | m = s
and t(m) = n;

(4) ¢ denotes the empty sequence;

(5) w* = U{o"mn < w};

(6) TS w<is a tree iff Vs, tcw<“(sCteT —seT),

(7) T is a well founded tree if Vfcw dn < wf |ne¢ T;

(8) for seT a well founded tree |s|, is defined inductively by:
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172 ARNOLD W. MILLER

|sly =sup{|s™n|, + L:Ins neT};

(9) for a < w, T is a normal a-tree iff

(a) T is a well founded tree such that |¢|, = «a;

(b) if seT and |s|, >0, then Vu s"ne T,

(¢) if seT and |s|, =B + 1, then Vu|s n|, = B;

(d) if seT and |s|, = » where X is a limit ordinal, then V3 <,
{n:|s"n|, < B} is finite (see [9]);

(10) for T € w<* a tree define:

P(T)={pl|aFe[T]*, p: F—2,Vn < w, VYsec®<, if s, s"neF, then
»(s) = 1 implies p(s"n) = 0}, P(T) is ordered by inclusion.

(11) A notion of rank on a partial order P is a function whose
domain is a subset of P and whose range is the ordinals. For a an
ordinal and pe P, we let |p| = @ mean that p is in the domain of
this function and its value is a. The following property must be
satisfied. For every pe P and B = 1, there exists e P compatible
with p such that |5| < B8 and for every ge P if |¢| < 8 and § and
q are compatible, then p and ¢ are compatible.

(12) Given a notion of rank on P if 7 is a term such that
- "7e2“, then we say that |z| = 0iff for any peP and n < ®
there exists ¢ ¢ P compatible with p such that |¢| = 0 and s € 2" such
that ¢ I-"5 = ¢".

(13) For T a normal a-tree and pe P(T) define |p| to be the
maximum |s|, for sedom(p).

(14) T* ={seT:|s|, = 0}.

The following lemma is key. It implies that |p| is a rank on
P(T).

LemMaA 1. v =1Vpe P(T)ap e P(T) such that

(a) p and P are compatible,;

)y pIT*=pTH

() Ipl =8

(d) vgeP(T) if |lg| < B, then P and q are compatible implies
p and q are compatible.

Proof. This is essentially Lemma 2 of [10]. We reprove it
here for completeness. Let F = {s"n:scdom(p), p(s) =1, |s|, =\ a
limit ordinal > 3, and |s"x»|, < B}. By normality of T, F' is finite,
and Vie F, |t|; = 2. Thus we can find » = pVte Famt m ¢ dom(r)
and r(t"m) = 1. Let D = {sedom(r): |s|, < Bland p =7 | D. pand
P are compatible since » extends them both. » [ T* = p | T* since
vie Fvm |t ™m|, = 1.

Now we check (d). Suppose |g| < 3 and p and q are not com-
patible. Then there are s cdom(p) and ¢ € dom(q) which demonstrate
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that »p U ¢ is not a condition.

Case 1. s =1t and p(s) # ¢(t). Since |q| < B it follows |t|, < g
and so scdom(p).

Case 2. s=1t"m for some m and p(s) = q(t) =1. But then
[s| < |tlr < B and so again s dom(p).

Case 3. t = s"m for some m and p(s) = ¢q(t) = 1. Since |t], < B
either |s|, < B and so sedom(p) or [s|, =\ a limit ordinal > g in
which case te¢ F' so there exists n < w such that »(t™n) =1 and so
t"n edom(p) and so ¥ and ¢ are incompatible. In all three cases
9 and ¢ are incompatible. ]

The next lemma asserts the fact that statements of small rank
should be forced by conditions of small rank. M is the ground
model of ZFC and P is any partial order with a notion of rank.

LEMMA 2. Let B(r) be any X, predicate with parameter in M,
18 +7"7€2, |t =0, and peP such that pI-"B(r)”. Then
pelP, |p| < B, v and D are compatible and P i—"B(r)".

Proof. The proof is by induction g.

Case 1. B =1. Then p I "3nR(z [ n, z | n)" where R is primi-
tive recursive and x € M N2°. Find ¢ extending p and s 2" for some
n such that ¢ "z n =& and R(s, x [ n) holds. By the definition
of |z| =0, 3p compatible with ¢ (and hence with p) such that [p| =0
and pi-"7n=238". Thus p I "3nR(zt I n, z | n)".

Case 2. [ a limit ordinal. Then p - "InB,(r)" where each B,(r)
is a X} predicate for some 5, < 8. Let p, extend p such that
In, < @ p, - "B, (r)". By induction 3p compatible with p, (and hence
with p) such that [p| < g, <@ and p I~ "B,(r)" (and hence p I—
"AInB,(T)").

Case 3. BS=~v+1and v>0. As in Case 2 we may as well
assume p |- "B(z)’ where B(r) is a II} predicate. By Lemma 1,
ipeP,p and p compatible, [p| <, and vgeP if |¢g| < v and ¢
and 9 are compatible, then ¢ and p are compatible. Then % I~ "B(z)".
Otherwise 3r extending 9, » "~ B(z)”. Since —B(r)is a X} predicate,
by induction 37eP, |?| < v, 7 and r compatible, and 7" — B(z)".
But # and p are incompatible (since p i~ "B(r)") and so by choice of
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P, 7 and P are incompatible a contradiction. ]

Next we describe almost disjoint forcing (similar to the way it
is done in [2]). Given X = {x,: ¢« < w,} & 2* distinet and (Y,: a<®,) =
Y where each Y, S w<*, we want to force a sequence of G; sets
{G,: 3€ w<*) such that Vsva(x,eG,—seY,). Let B be the family
of all clopen subsets of 2°. Define P(X, Y) as follows:

it is the set of all » such that

(a) 7 is a finite subset of W< X w X (B U X);

(b) if (s, m, B), {s, n, x,y €7 then x,¢ B;

(¢) if (s, m, x,y €7 then s¢Y,.

As usual 7 extends p, (r = p)iff r 2 p. It is well known that P(X, Y)
satisfies the c.c.c. and also for any G which is P(X, Y)-generic if
we define G, = N, U {B: {£s, n, B>} € G} then VsVa(z,€ G, — s€Y,).

1. Forcing a Souslin set. We now describe how to force Souslin
sets. Let M be our ground model of ZFC. Working in M let F*
be some standard fixed bijection between w<® and w, and define
F:2¢ —2¢° by F)(s) = 2(F*(s)). Let X = {x,;a < w,} be a fixed
subset of 2° such that for all a < w, F(x,) is the characteristic
function of a normal a-tree T,. Let

P, =3 P(T),

note that P, has c.c.c. since it is equivalent to adding w, Cohen reals.
Note that any G which is P(T,)-generic over M determines (and is
determined by) a map G,: T, — 2. G, | T¥ in fact determines G, by
the rule G,(8) = 1iff Yn G, (s"n) = 0. Given G° P,-generic over the
ground model M, let G° = {G,: a < w,) and let y, = {s e T*: G.(s) = 0}.
Let P, = P(X, Y) where Y = y,sa < w). (So P, ecM[G']l.) Let P=
PiP,.

Working in M[G] for G P-generic over M (so G = {(G,: a < w,),
(G*: s € @<*))) let:

A= {z,eX:Gulg) =1} .

To see that A is analytic in X we will define A a 2! set such that
AnNX=A. Define zcAiff 3T C @<, 3p: »<* — 2, 3T* C ®<* such
that

(a) F(x) is the characteristic function of T}

(b) T is a tree;

() T"={seT:In sne¢T}={scT:vn snegT};

(d) vseT* p(s) =1iff xeG,;

() vseT — T* p(s) =1iff vu p(s"n) = 0;

() »lp) =1



GENERIC SOUSLIN SETS 175

(a) thru (f) are easily seen to be a Borel predicate of =, T, T*, and
p, and hence A is 3.

In order to show A is a new Souslin set we first want to extend
our notion of rank to P. Let @ = {r|r satisfies (a) and (b) in the
definition of P(X, Y)} (thus Q € M). Then

{(py q): p ePO; q GQ ’ a‘nd p ”_— ”é eP(X; Y)"}

ordered by (p, 9) = (p, @)iff p = p and § = ¢, is clearly dense in P,
so for simplicity assume it is P. Let us unravel p -"¢e P(X, Y)".
This means that whenever (s, n, x,) €q’ then pi-"s¢ Y.. But »i—
"se Y, iff s¢ Tk or (se T%, scdom(p,), and p,(s) = 1). The fact which
we note is that if p, p’ e P, and Va < w, p, [ TF = p, 1T T#, then vre
Q {p,ryeP iff {(p’,r)eP.

For any a < w,, we define the following rank function on P:

|#, e = max {sl; ;7 >a and sedom(p)}.

Note that the rank depends only on the part of the condition in P,.
To see that it is a rank function, let (p, ¢) be any condition and
B =1. For each v > a by Lemma 1 3p,c P(T,) such that 5, 1 T* =
p 1 T* P, and p, are compatible, |;] < 8, and vge P(T)) if |q| < 8
and 7, and ¢ are compatible, then p, and ¢ are compatible. Let
P e P, be defined by:

N P if v=a
r=17. .
’ P, if v>a.

By what we have already remarked

B, eP, (D, D= B (0, g and (P, q) are compatible ,
vip',¢)eP if |(p',4)]. < B and
(p', q') is compatible with (P, q), then (p’, ¢’) is compatible with (p, q).

Let G be P-generic over M, and let A be the generic Souslin
subset of X determined by G. We first show that M[G]="A is not
Borel in X". Suppose on the contrary that 3z, wB(v, w)aX’ predicate
with parameters in M, and » € P such that

rI-"vxe X(xe Aiff B(z, x))" .

By c.c.c. we can find @ < w, such that [7|, =0, ||, =0, and B<a.
Let v be any countable ordinal greater than a + w. Extend » =
(p, @) by adding p,(¢) = 1 to p, and call the result »,. By this addi-
tion, r "2 A", so r I-"B(r, x,)"”, so there exists », compatible
with », such that ||, < B and »,~"B(z, z,)”’. But sincey > a + ®
and |7, < 8 < a, it follows that 37, = #, such that p¥¢) = 0 and
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thus - "z, ¢ A”. This is a contradiction since 7, and », are compatible
(since 7, and 7, are compatible).

Now let us prove something a little stronger. Let M="H C
P(X), |H| £ 0", then, we claim M[G]="A¢ B(H) (the o-algebra
generated by H)".

Work in M. Let H={A,.n<w} and define K: X —2* by
Kx)n) =1iff xe A,. Let Y be the range of K, then K has the
property that it maps the o-algebra generated by H into the Borel
subsets of Y.

For any Ce B(H)"“1aB Borel subset of Y, and p € P such that

pi"veeXxeC iff K(x)eB)'.

The preceding proof now goes through. Finally we are ready to
state the theorem.

THEOREM 3. It is comsistent with ZFC that there does not exist
H < P(2°) countable such that every analytic set is im the o-algebra
generated by H.

Proof. Let M, X, and P be as above. Working in M let
{P,:a < w)} be a set of isomorphic copies of P. Force with I{P,:
a < o). Let {(G,.a < w> be generic over M. If M[G,: o < )] =
“H < P(2%), |H| £ @' then by c.c.c. 3a, < @ such that {BN X:
BeH}e M[G,: a # a,). Let M[G,: a # a,] be the new ground model
and A the analytic set created by P,. Note that although P, is
not the same as adding Cohen reals, because of its finite nature it
is the same partial order whether defined in M or any extension of
M (e.g., M[G,: a # a,]). We have already noted that AN X is not
in the o-algebra generated by {Bn X: Bec H} and therefore A is not
in the og-algebra generated by H. ]

2. Making subsets generic Souslin sets. Let Y be the set of
countable successor ordinals greater than two. As in §1 let X* =
{x,; a3} 2% and F:2°— 2~ be the map such that vae 3, F(x,)
is a normal a-tree 7,. For ¢ =0 or 1 and T £ w<* define:

P{T) = {pe P(T):3p an extension of », H(¢) = i} .

It is easy to check that for any G which is P*T)-generic over M,
G(p) = 1. Given Z < X define P(Z) a suborder of P by (p,q)e
P(Z)ift (p,q)e P and Vael¥

(a) if aeZ then p,c P(T,);

(b) if a¢ Z then p,e PYT,).

As before for G P(Z)-generic over M, in MI[G], {z.. e Z} is



GENERIC SOUSLIN SETS 177

analytic in X*. The reason for Y will be evident in the proof of
Lemma 5.

THEOREM 4. There exist a generic extension N of M such that
N = “Every subset of X* is analytic in X* but some subset of X*
is not Borel in X*'.

Proof. N will be obtained by iterating with finite support P(Z).
Since each P(Z) is a relatively simple suborder of P we can give
the following simpler definition. We assume M= '"2“t = ;. Let
Q = X..<., P, as in §1 and for p € Q define supp(p) = {a < w,: p(a) # 0}.
Let A, for a < w, list with ®, repetitions all maps A: w, — [@]%“.
Inductively define @, £ Q for a < w,, For a=0 let Q, = {pecq:
supp(p) = {0}} (i.e., @ = P). For all aQ.< {p € Q: supp(p) S a}. For
o a limit ordinal let @, = U{Q;: 8 < a}. For a+ 1 let G, be Q,-
generic over M and let Z, = {8€2: A,(8) N G, # ¢}. Then

Q... ={peQ|plaecQ, plal, "via)eP(Z)",
and supp(p) & « + 1} .

(Of course by » [ @ here we mean that condition in @ whose restric-
tion to « is the same as p’s and whose support is contained in «.)

Thus if G,, is Q,, generic over M then M[G,] = “Every subset
of X* is analytic in X*'. Work in M. Given a < w, recall the
definition |p|, for pe P given in §1. Given KC w, and a < w,
define a map F:Q, —aU({c} by F(p)=max{|p®)|.:oecK} if
supp (p) € K and the max is less than a, and otherwise let Fi(p) = .
Denote F(p) by |p|(K, a). For suitably chosen K and a we will
show |p|(K, ) is a rank function. Given I" £ @,, and ¢ a sentence
we say I” decides ¢iff vpe@Q,3gc I p and g are compatible, and ¢ I-
"g" or q - "__ ",

LEMMA 5. Suppose that Vvoe KVR3<a{p € Q;: |p|(K, a)=0} dezides
"BeZ!. Then |p|(K, a) is a rank function.

Pyroof. We must show that given pe@,, and 1 = 8 = a there
exists peQ,, compatible with p, [§|(K, a) = 5, and VqeQ,, if
lg|(K, a) < B and P and g are compatible, then p and g are compatible.

Recall that in the proof that | |, is a rank function on P we
obtained for each pc P a e P such that:

(@) [Ple =8

(b) P and p are compatible;

(¢) VqeP if |¢q|l, <G and ¢ and p are compatible, then ¢ and
p are compatible;
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@) vy <a, pr) = p).
Given peQ,, define p by letting vioe¢ K, p(6) = 0 and viec K, p(9) is
the condition in P obtained above for p(d). We show that peQ@,,.
Suppose not and let 6 be the least such that % [ 6 does not force
"p(8)e P(Z;)". Clearly 6e K. Let $(6) = (p’, q). Then there must
be some v €23 such that p, ¢ P(T;) or p,¢ PYT,), and p [ § does not
force "v ¢ Z) respectively "ve Z7. If p,¢ P(T;) then ¢ € dom(p;) and
p(¢) = 1. If p;¢ PYT,) then either ¢ cdom(p;) and p;(¢) = 0 or In <
w, {n)y edom(p)) and p,({n)) = 1. Since v Y it is a successor ordinal.
Since [p(d)]|. = B < a and |{(n) l. = v — 1 it must be that v < a. By
the properties of K and «a, 3¢ Q,, |¢|(K, a) =0, ¢ - "v¢ Z) (respec-
tively "ve Z;), and ¢ is compatible with § [ §. But since ¢ is com-
patible with p | g, it is compatible with p [ §. This is a contradiction,
since by (d) g —"5(5) ¢ P(Z,)". ]

If A is the analytic subset of X™* which is created at the first
step, then A is not Borel in X* in the model M[G,]. To see this
suppose not and IpeQ,,

pl—"vee X*(xcAiff x e B.)"”

where B. is a X} set with parameter r €2”. Using the c.c.c. of Q,,
it is easy to obtain K € w, countable, 0 € K, and a < @, with 8 < «,
such that |p|(K, a) =0, |[7|(K, o) = 0, and K and « satisfy the requi-
rements set down in Lemma 5. As in §1 this leads to a contradiction.

3. Abstract Souslin sets. Recall that R = {4 X B: A, B < 2"},
B(R) is the c-algebra generated by R, and S(R) the family of sets
which are gotten by applying the Souslin operation to sets in B(R).

THEOREM 6. It 75 comsistent with ZFC that S(R) = P(2° x 2*) =+
B(R).

The model used will be a minor modification of the one obtained
in §2.

LEMMA 7. Suppose X 2, | X| = 1|2°], and every subset of X of
cardinality less than |2] is analytic in X. Then S(R) = P(2° x 2v).

Proof. Let £ =|2"| and X = {&,: @ < £}. Since S(R) is closed
under finite union, it is enough to show that any Y & £* with the
property that {a, 80 e Y >a < 3, is in S(R). For each g let X; =
{.: {a, B € Y}. For each 8 and sew<" let C? be a closed subset
of X such that X; = Useoo MNu<o Cia-
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For each scw< define B, = {{a, B8): 2, C?}. Since Y =
Uscoe MNu<o Byriy it is enough to check that each B,e B(R). Fix se
< and let {D,: n < w} be an open basis for X. For each g8 define
Ys(m) = 1if D, N C{ = ¢. It follows that aecCliff ¥n (if yy(n) =1
then a ¢ D,). Letting E, = (D, x X) U D, X {B: ys(n) = 0}) we have
that B, = .., E.. ]

LEMMA 8. Suppose F: X —»Y 4s 1 — 1 and YU open in Y F-(U)
18 Borel in X. If every subset of Y 1is analytic in Y then every
subset of X is analytic in X.

Proof. Given A & Xlet B= F"A. Then there are Borel subsets
of Y, B, for s w<* such that B = U cov <o Briae Let A, = FY(B,),
then A, is Borel in X and 4 = Ujycwo Nu<o Asiae |

We now prove Theorem 2. Let M, the ground model of ZFC in
§2, be a model of MA + 2° = w,. We first show that for G,, Q.-
generic over M, M[G,,] models that S(R) = P(2° x 2*). Working in
M for any Z, W< 2° with [Z|=|W|=w, if F:Z—->W is any
1 — 1 map then by Silver’s lemma (see [6]) for every U open in
W, F-Y(U) is Borel in Z. F still has this property in any extension
of M since W is second countable and M contains an open basis for
W. Working in M there exists X & 2* such that | X| = w, and
VYZS X if |Y| £ w, then Y is Borel in X (a generalized Luzin set
is such an example, see [9]). We claim that in M][G.,] every subset
of X of size < w, is analytic in X and thus by Lemma 7, S(R) =
P(2° x 2°). Working in M[G,,] for any Z< X if |Z| < w, then
YeMZCY and |Y| £ w,. Letting F:Y — X* be any 1 — 1 map in
M we have by Lemma 8 that every subset of Y is analytic in Y,
and since Y is Borel in X, Z is analytic in X.

We next want to show that in M[G,)], P(2° X 2°) # B(R). It is
enough to show that in M][G,,] there does not exist a countable
H < P(X*) such that B(H) = P(X*). To see that this suffices let
(Xpa<w)=PX* and let Y={z,a):zeX} S X*xXw, If Y
is in the g-algebra generated by {4, x B,: n < w} then B{4,: n<w}) =
P(X*). Just show by induction that VK e B{4,xB,: n < o}h)VB < w,
{xe X*: (x, 8) e K} e B{{A,: n < w}).

By the technique of §1 and §2 we note that in M there is no
countable H C P(X*) such that the generic Souslin set created at
the first step is in B(H). Note that for Z = ¢ and G P(Z)-generic
over M the set A = {z,€ X*: G,(0>) = 1} is also a generic Souslin
set over M. This is because the requirement that G.(¢) = 0 puts no
constraint on the value of G, (K0)). |
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4. Remarks. (1) In the model used for Theorem 1 one can
show that there does not exist any H & P(2°), |H| < |2“|, such that
every analytic subset of 2% is in B(H). Note also that w, can be
replaced by any & > w, of uncountable cofinality. Also in this model
it is true that the universal 3! subset of 2“ x 2* is not in the o-
algebra generated by the abstact rectangles.

(2) It is not hard to modify the technique of §2 to get it
consistent with ZFC that 3X £ 2°|X| = w, (or even | X| = W,,) such
that every subset of X is analytic in X but not every subset of X
is Borel in X.

(3) X* in §2 has Baire order w, in M[G,,].

(4) In [5] Kunen showed that if one adds w, Cohen reals to a
model of CH then {(a, 8): a <8< w,} is not in the c-algebra generated
by {(AXB: AZS w,, BC w,}. In the same model (actually CH is not
necessary in ground model) there is a subset of ®w,X®, not in the
o-algebra generated by {4 x B: A < w,, B< w,}. To prove this it is
enough to find F < P(w)|F| = w, such that there does not exist
H C P(w,) countable with FF & B(H). Let P = {p|p: F — 2, for some
Felw,]<*} and suppose G is P-generic over M. Let

X={a<wo |G =1}

and note that for any H C P(w,) countable and in M, M|G] I "X¢
B(H)”. This is because for any Ye B(H) 3t €2 Y e MJt].

(5) In [12] Rothberger showed that 2° = w, + 2" = W, implies
that not every subset of @, X w, is in the oc-algebra generated by
{AXx B:AZ w,BS w}. To see this let G, for a <W,, list all
countable subsets of P(w,). Since |B(G.)| = 2° = w, we can pick
K,e P(w,) for a« < w, such that K, ¢ U;.., B(Gs). It follows as in
(4) that {(B,@):B€K,} is not in the o-algebra generated by
{AxB:AC w, B< w,}.
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