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ON COMPACTLY PACKED RINGS
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A commutative ring with identity is compactly packed
by primes (briefly: a C. P.-ring) if whenever an ideal I of
R is contained in the union of a family of prime ideals of
R, then / is actually contained in one of the primes of the
family. The aim of this note is to characterize Noetherian
P. C.-rings ideal theoretically and, with suitable restrictions,
in terms of Picard groups.

The notion of a C. P.-ring was introduced by C. Reis and T.
Viswanathan in [6], where Noetherian C. P.-rings were characterized
by the property that primes are radicals of principal ideals, and it
was asked if it suffices to have maximal ideals be radicals of principal
ideals. N. Popescu studied the torsion theoretic aspects of C. P.-rings
in [4], where he extended the preceding result to semi-noetherian
rings and asked if every semi-noetherian C. P.-ring must have Krull
dimension at most one. Independently, W. Smith [8] characterized
all C. P.-rings as those rings for which every prime ideal is the
radical of a principal ideal. In this note we answer the preceding
questions (the former in the affirmative and the latter in the negative)
and examine a connection between torsion Picard groups and the
C. P.-property.

We would like to express our thanks to William Krauter and
Roger Wiegand for several enlightening observations regarding the
connection between Picard groups and C. P.-rings.

As usual Spec(2?) denotes the set of prime ideals of R, V(I) —
{P e Spec(j?) 11 £ P) for subsets I of R and D{I) denotes the comple-
ment of F(I). Denote the radical of the ideal I by rad(/) and the
residual {reR\rI^J} by (J: I). As we have noted, the first equi-
valence of the following theorem is due to Smith [8]; we supply a
proof for convenience of the reader.

THEOREM 1. The ring R is a C. P.-ring if and only if every
prime ideal is the radical of a principal ideal, in which case every
radical ideal is the radical of a principal ideal. Moreover the
Noetherian ring R is a C. Y.-ring if and only if every maximal
ideal is the radical of a principal ideal.

Proof. Suppose the R is a C. P.-ring and / is a radical ideal of
R, i.e., I = rad(/). The C. P. property implies that Jg= ΌD(I), whence
there exists an element x e I such that V(x) £ V(I). But the converse
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inclusion is obvious, so τa,d(xR) = rad(J) = I. Conversely, suppose
that every prime ideal of R is the radical of a principal ideal and
that l £ U l for some ideal I of R and subset X of Spec(iϋ). Let
S be the multiplicatively closed set R\\J X and expand / to an ideal
P maximal with respect to avoiding S. Then P is necessarily prime,
so the radical of a principal ideal, say xR. Now xeQ for some Q e
X, whence I £ Q as desired.

Finally suppose that R is a Noetherian ring whose maximal ideals
are radicals of principal ideals. Without loss of generality, R is
reduced. Moreover the Krull dimension of R is at most one by the
Principal Ideal Theorem. So to show that R is C. P. it suffices to
prove that every minimal prime of R is the radical of a principal
ideal. Such primes are finite in number, say Qlf , Qn, so we may
induct on n to prove the result. It suffices to prove the Qx is the
radical of a principal ideal. But (0: Qx) = Π {Qj\j Φ 1}, so R/(0: Qx)
is C. P. by induction. Now use the first statement of the theorem
to obtain an element xeQ± such that rad(xi? + (0: Qx)) = rad(Qx +
(0: QJ). Certainly Qt £ rad(xR) and for the converse, let yeQt and
choose n such that ynexR + (0: QL). Then yn+1exR, as desired.

REMARK 2. In [6] it was shown that for a Dedekind domain
the C. P.-property is equivalent to the condition that R has torsion
ideal class group. R. Wiegand pointed out to us that this result
may be generalized in the following way: Let J? be a one dimen-
sional Noetherian ring with finitely many singular maximal ideals
(i.e., maximals at which the localization of R is not a valuation ring
or field). Denote the Picard group of R by Pic(JE). Lemma 3 of [9,
p. 30] shows that if Pic(JB) is torsion, then every maximal ideal is
the radical of a principal ideal. W. Krauter has proved the converse
of this result under the additional hypothesis that R is a domain,
and with his kind permission we sketch his proof: note that if M
is any nonsingular maximal ideal of R, then the only primary ideals
associated to M are powers of M. So if M is the radical of the
principal ideal xR, the xR is a power of M. Consequently, if I is
any ideal of R not contained in any singular maximal, then the
primary decomposition of / is a product of maximal ideals and some
power or I is itself principal. Now use Lemma 4.3 of [2, p. 135] to
obtain that if I is invertible, then there is an ideal J isomorphic to
I such that J is not contained in any singular maximal ideal. Since
Pic(iϋ) is in this case the class group of R (invertible ideals modulo
the subgroup of principal fractional ideals), Pic(iϊ) is a torsion group
as desired. The domain hypothesis on R may be removed by the
following observations: first, for Noetherian R, Pic(iϋ) is still the class
group, where invertibility is with respect to the total quotient ring
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of R. Secondly, Lemma 4.3 of [2] is valid for nondomains, as we
now demonstrate.

LEMMA 3. Let I be an invertible ideal of the Noetherian ring
R and Pl9 « , P Λ prime ideals of R. Then there is an invertible
integral ideal J = I such that J §5 Pi9 i = 1, , n.

Proof, Without loss of generality the P/s are distinct maximal
ideals such that every associated prime of R is contained in some
P^ Select for each index i elements ai9 6, such that α̂  e I"1, Iat g£ P*
and bi belongs to all P/s except Pt. Set c = a1b1 + + anbn and
obtain that eel'1 but JcgΞP, for any index i. In particular, J — Ic
is contained in no associated prime of R, so J contains a nonzero-
divisor. Therefore c is a unit in the total quotient ring of R and

THEOREM 4. Let R be a one dimensional Noetherian ring with
only finitely many singular maximal ideals. Then R is a C. P.-ring
if and only if Pic(i2) is a torsion group. In this case the integral
closure of R (in its total quotient ring) is also a C. P.-ring.

Proof In view of Remark 2 and Lemma 3, the property of
torsion Picard group is equivalent to the condition that every max-
imal ideal be the radical of a principal ideal. So Theorem 1 yields
the first statement. For the second statement, let asteriks denote
integral closures and N the nilradical of R. Since nonzero-divisors
of R map to nonzero-divisors of R/N9 we have that R*/NR* embeds
naturally in (R/N)*. Therefore we may as well assume that J? is a
reduced C. P.-ring and show that any ring S between R and R* is
a C. P.-ring. Let Pl9 - ,P W be the minimal primes of R9 so that
iϋ* = π(R/Pt)*. Also let Qt be a minimal prime of S lying over Pi

so that S/Qt C (R/Pt)*. By the Krull-Akizuki Theorem, S/Qt is a one
dimensional Noetherian domain (or a field), and since n Qt = 0 we
deduce that S is Noetherian ring of dimension at most one. More-
over if ikf is a nonsingular maximal ideal of R9 then RM — R% =
(R*)M', thus RM = SM. So if the prime ideal P of S lies over M, one
obtains by checking locally that MS = P. Since the only primary
ideals for M are powers of M, the C. P.-property ensures that some
power of If is a principal ideal. Consequently, the same is true of
P. To complete the proof, let / be an invertible ideal of S and use
Lemma 3 to obtain an isomorphic invertible integral ideal J which
is contained only in maximal ideals of S lying over nonsingular
maximals of R. As in Remark 2, J is a product of the maximal
ideals containing it. Hence a suitable power of J is principal and
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the proof is complete.

EXAMPLE (1). It would be interesting to know if Theorem 4
holds for all Noetherian rings (even domains). In this connection
there do exist examples of Noetherian C. P.-domains with infinitely-
many singular maximals, namely those obtained from M. Nagata's
construction in §5 of [3, p. 11].

(2) There exist non-Noetherian C. P.-domains which are even
Priifer domains of Krull dimension one, yet do not have torsion
Picard group. Such an example is constructed by W. Heinzer in [1,
p. 139]. In fact the QR-domains studied in this paper are exactly
the Priifer C. P.-rings.

(3) Let R be a one dimensional affine algebra over a field k
contained in the algebraic closure of a finite field. Then Pic(iϋ) is
torsion by Lemma 2 of [9, p. 30], so R is a C. P.-ring.

(4) Theorem 1 implies that any valuation domain of finite Krull
dimension is a C. P.-ring. In particular let V be a discrete valuation
ring of rank two (see [7] for examples); i.e., the prime ideals of V
are 0 c P c M and the rings VP and V/P are both discrete rank one
valuation rings. We assert that every nonzero homomorphic image
of V has nonempty set of associated primes. It then follows from
Theorem 5.16 of [5, p. 352] that V is semi-noetherian. Therefore a
semi-noetherian C. P.-ring can have Krull dimension greater than
one, which answers a question of Popescu [4] in the negative.

To prove the assertion let V/I be a nonzero homomorphic image
of V. If, for some x e V, (/: x) is a proper ideal of V strictly larger
than P, then (I: x) is a power of M since V/P is discrete rank one.
But then x + I generates a cyclic submodule of V/I isomorphic to
V/M* and M is an associated prime of V/I. If no such x exists then
the kernel of the canonical map V/I->(V/I)P is zero, so V/I embeds
as an essential T-submodule of (V/I)P. But IP = PP for some n ^ 1
since VP is discrete rank one. Choose xeP^^Ip and obtain that
(IP: x) = P. Thus P is an associated prime of the F-module VP/PP,
whence P is an associated prime of the essential submodule V/I.
This proves the assertion in all cases.
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