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Let R be a ring with unit element and without zero-
divisors and let H(R) = {#|0 = z € R} where % is the mapping
from the set of all nonzero principal right ideals of E into
itself defined by Z(aR)= zaR. H(R) is a partially ordered
semigroup that can be considered as a generalization of the
group of divisibility of a commutative integral domain.
We study those rings R for which H(R) is totally ordered.

1. Introduction. Associated with any commutative integral
domain A is the partially ordered group G(A) of nonzero fractional
principal ideals of A with aA < bA if and only if a4 contains bA.
It is well known (see [4], [5], [8]) that G(4), the group of divisibility,
reflects certain properties of A, like A being a unique factorization
domain, the fact that any two elements in A have a greatest common
divisor or A being a valuation ring. This concept of a group of
divisibility cannot be extended directly to a not necessarily commuta-
tive integral domain R.

In this paper we associate with any ring R with unit element
and without zero-divisors a partially ordered semigroup H(R) which
is isomorphic to the semigroup H(A) & G(A) of nonzero principal
ideals a4 in A if A is a commutative domain.

After observing some basic facts about H(R) we characterize in
§3 those rings R with H(R) totally ordered as right chain rings R
with Ja S aR for all ¢ in R and J = J(R) the Jacobson radical of
R. These rings are localizations of right invariant right chain rings.
The main result of §4 is the theorem that a ring with H(R) totally
ordered and d.c.c. for prime ideals is right invariant. In a final §5
we show by examples that for every totally ordered group G there
exists a ring R with A(R) totally ordered and G (not only the positive
cone of G) can be embedded into H(R). The value group G(A4) is
particularly useful in case A is a commutative valuation ring. The
nonzero principal right ideals in a right chain ring R form a semi-
group H(R) under ideal multiplication only if R is right invariant.
In the general case it is the semigroup H(R) which takes the place
of H(R). Mathiak in [6] studies right and left chain domains with
the help of a group that could be considered a generalization of G(4).
We found that in the case of one-sided conditions a generalization
of H(A), which will be a semigroup only, will be more natural.

2. Definition and preliminary results. We consider only rings
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with unit element and without zero-divisors. We call a ring R 7ight
invariant if Ra S aR (if and only if RaR = aR) holds for all ele-
ments ¢ in R and R is a right chain ring (sometimes called a right
valuation ring) if for a, b in R either aR C bR or bR < aR holds.
Here I < L always means that the set I+ L is contained in L;J =
J(R) is the Jacobson radical and U = U(R) the group of units of E.

Let W= {aR|0 = o in R} be the set of nonzero principal right
ideals of R. Every element 0 == « in R induces a mapping & on W
with Z(aR) = zaR; and a?z} =%y follows. With % = ¥ defined as
raR < yaR for all ¢ in R we can consider H(R) = {#|0 # x in R} as
a partially ordered semigroup. Further, m/ = inf (%, %); i.e., 2 = &,
Z < 7 implies z < m/:/y The mapping ‘~’ from R*(=R\0) to H(R)
is called the regular right valuation of R with the value-semigroup
H(R). This semigroup satisfies the following conditions:

(1) H(R) is a partially ordered semigroup with unit element

(2) &< 7 if and only if there exists a 7 in H(R) with & =
and 1< T

(3) %y = %% implies ¥ = Z for %, ¥, Z in H(R).

This means that the order in H is a right natural order and H is
left cancellative.

We draw a few immediate conclusions from these properties:

(i) %=1 implies that # is a unit in H, i.e., there exists ¥
with &J = §& = 1.

(ii) 1< # implies #a = a&' for some &’ in H.

To prove (i) we have by (2) an element ¥ with % = 1. This implies
%% =% and 7% = 1 using (8). For 1 < #and @ in H we have & < @
and %@ = @& for some %’ using (2) again. Let U = U(R) be the
sllbgroup of units of A(R). The following condition is satisfied by
H(R):

(4) Let U’ be a subgroup of U with U'%# € U for all % in
H(R). Then U’ = {i}. In particular U = {I} for R commutative.
The following is an easy example of a semigroup S satisfying con-
ditions (1)-(3), but not (4).

Let S = {(n, a); n, a € Z; n = 0} considered as a subsemigroup of
G =Z@ Z; Z the integers. We write (n, a) > (m, b) if either n > m
or n =m and a > b. Conditions (1), (2), (8) hold for S, but U =
{(0, a); a € Z} is a subgroup =+ {¢} of S, violating (4).

Two obvious problems arise: What is the structure of semigroups
with (1), 2), (3), (4)? Given a semigroup S satisfying (1), (2), (3),
(4) is S=H(R) for some R? We are not able to answer these questions
in general.

1.
¥

DeFINITION. Let R be a ring. Then
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R={reR|F=1U{0}) = {reR|raR < aR for all a in R}.
It is obvious that R is a subring of R.

LEMMA 1. (1) Ra S aR for all a in R; in particular R is a
right invariant subring of R.

(2) The mapping aR to @ for a # 0 in R defines an isomor-
phism between the semigroup C(R) of R-modules aR with aA'in R onto
H(R). In C(R) we have aRbR = abR as operation and aR < bR if
and only if aR 2 bR. .

(8) H(R) =~ R*/UR) where U(R) is the group of umits of R
and r, =7, if and only if r, = r.u with u in u(R) defines a con-

gruence relation on R*, the multiplicative semigroup of nonzero ele-
ments in R.

Proof. (1) Ra < aR by definition. If » is in R then ra = ar,
and rab = abr, = arb for any a, b in R with », », in B. But »b =
br, implies 7, in B and Ra Z aR for a # 0 in R.

(2) Using (1) it follows that aRbR = abR for a, b in R. If
@ = b then axR C bxR for all z in R and a = bs and s in R, hence
aR C bR follows. Reversing these arguments yields the converse
and H(R) ~ {aR|0 # o in R} as a partially ordered semigroup.

(8) is just a different version of (2). ]

REMARK. If R is embeddable into some skew field then R =
no;fa eER a'Ra’—l'

If R is a ring such that the product of any two nonzero
principal right ideals is again a nonzero principal right ideal we
write H(R) for the semigroup of the nonzero principal right ideals
of R; H(R) is a partially ordered semigroup with aR = bR if and
only if aR Z bR.

If H(R) exists and is isomorphic to H(R) under the mapping
that assigns % to xR then R is right invariant. On the other hand
H(R) does exist for some rings that are not right invariant; simple
rings or not right invariant principal ideal domains are obvious
examples.

The following lemma shows that H(R) exists for a local ring R
if and only if R is right invariant.

LEMMA 2. Assume H(R) exists and let 0+~ a be in R. Then
RaR = bR for some b and if a = bc then ¢ is mot contained in J(R).

Proof. It only remains to show that ¢ is not in J(R). We have
b=3) r.as; for some 7, s; in R; b= 7bcs,;=> brics,=b >, rics, where
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b = br; for some 7} in R. But this is impossible for ¢ in J(R). []

COROLLARY. If R is local then H(R) exists if and only if R is
right invariant.

3. H(R) totally ordered. If A is a commutative integral
domain its group of divisibility G(A) is totally ordered only if A is
a valuation ring. We will discuss the corresponding question for
H(R) and characterize the rings with H(R) totally ordered. If x
and % are nonzero elements in R then Z=< % or ¥ < % and zR 2 yR
or yR 2 xR follows. Therefore, R is a right chain ring if H(R) is
totally ordered. Examples (see §5) show that for R a right chain
ring H(R) is not necessarily totally ordered.

THEOREM 1. For an integral domain R the following conditions
are equivalent:

(1) H(R) is totally ordered.

(2) R is a right chain ring such that » in R, not in R implies
»~* in R.

(3) R = R}, the localization of a right invariant right chain
ring R at a prime ideal P of R'.

(4) R is a right chain ring such that Ja < aR for all a in R.

(5) Risa right chain ring and if Ra & aR then Ja < aJ for
any a wn R.

(6) The submodules of the right R-module R are totally ordered.

Proof. (1)= (2) We observed that R is a right chain ring if
H(R) is totally ordered. For an element 7, not in R, we have # < 1,
hence raR 2 aR for all acR and r in U(R), r»* in R follows.
(2) = (3) It follows from (2) that R is a right chain ring and from
Lemma 1 that R is right invariant. The set S = R N U(R) is multi-
plicatively closed and P = R\S is a prime ideal in R. TFinally, R =
R, = RS is the localization of R at P.

To prove that (3) implies (1) we need a few lemmas.

Let R be a right invariant right chain ring. We write 7 =
{(fe HR)|te T} for a subset T < R* and we say T (@) is R-con-
vex if for tRCsRC R, t in T, the element § is contained in 7.
One can check the following two statements.

LEMMA 3. There is a one-to-one correspondence between the set
of R-convex subsets of H(R) and the right ideals =R given by

S— 8§ = {xecR|F¢S}uU {0}
I—I'={&cH®R)|2R>D I}
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where S is R-convex and I is a right ideal #R.

LemMMA 4. The R-convex subset S is a subsemigroup of H(R) if
and only if ' = P is a completely prime ideal of R.

We consider the situation as deseribed in the last lemma. Then
S = {xeR|FeS} is a multiplicatively closed saturated (i.e., ab in S
implies @, b in S) right Ore system in E. The corresponding prime
ideal is P= R\S and R, = RS~ is the corresponding localization.
Set N= N(S) ={reR|ra =as,, s, in S for all a =0 in R}. N is
an R-convex subsemigroup of S maximal with the property that
o 'Na < N for all nonzero a in B. To see this, one observes that
with 2 in N, nR < mR & R, we have n = mr for some 7 and na =
as, = am'r’ for m’, v in R with ma = am’, ra = ar’. Therefore
mr' =s, is in S and m' in S, and m in N. Further, » in N and
na = asg, implies s, in N.

To N there corresponds a prime ideal Q = R\N with P Q & J.
We want to describe H(R,) and we will get the result by considering
two special cases:

(i) N@S) =28, ie.,, @ = P (Lemma 5) and

(ii) N(S) = UR), i.e., @ = J (Lemma 6).

LEMMA 5. Let R be a right invariant right chain ring, P a
prime ideal in R, S = R\P.~ Assumf N(§) =N=3S. Then R, 13
again right invariant and H(R,) ~ H(R)/N = H.

Proof. That R, is again right invariant follows from the fact
that every principal right ideal in R, has the form aR, with a in
R and that sa = as, for all ¢ in R, s, in S if s is in S = N. Hence
rs'aRp, = raRy, = ar'R, with ra = ar’, r, ¢ in R. If one defines
¥, = %, 7, T, nonzero elements in R, if and only if 7, = 7n or
rn = 7, for some n in N, then “=” is a congruence relation de-
fined on H, and we write H = H(R)\N for the factor semigroup
modulo this congruence. Further, #, > 7, in H if and only if », > 7,
in A(R) and # %= 7, It follows that H = H(R,) as totally ordered
semigroups.

LEMMA 6. Let R be a right invariant, right chain ring, P a
prime ideal in R, S = R\P. Assume N(S) = U(R). Then Rp is not
right invariant if PcJ and H(R,) = H(R)S.

Proof. H(R) contains the subsemigroup S. We will prove that
under the a;bove assumption H(R) can be embedded into the semi-
group H(R)S-' = {¥3'|r ¢ R* se S} of fractions for H(R).
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The semigroup H(R) is totally ordered and apg = avy for a, B, Y
in H(R) implies 8 = v. Since the other cancellation law does not
hold in general, H(R) itself may not be embeddable into a group.
But for every # in H(R) and § in S there exists an element & in
H(R) with #@ = § or # = §d and H(R)S exists ([3], Prop. 5.1; page
21) if we can show that #3 = #3 implies #, = #, for #, 7, in H(R),
Fin S.

We can assume 7, = 7,¢ for some ¢ in R and we are done if we
can show that ¢ is in N. But, 7§ = #,§ implies »r,cs = 7,s¢ for some
¢ in U(R). Therefore ¢s = se and ¢ is an element of S. Let a be
in R. If o is in S then ca = ac¢’ with ¢/ in S. If a is not in S then
a=sa, for some q, in R and ca=csa,=seca,=sa,e’=as’ with ¢ in U(R).
Hence, ¢ is in N = U(R) and K = H(R)S-* = {¥3-|r € R*, se S} exists.

This semigroup is totally ordered if we define 73 = #,3;* if and
only if for all §, §’, with 3.5 = §,3" we get 73 = 7,8".

This last condition is equivalent to #, = #3 if 5, — 5,3 and 73 = 7,
if 5,3 = s, where s is some element in S. For the necessary com-
putations it is the easiest to write any finite number of elements
in K in the form #87, ¢=1, ---, n.

It is a bit tedious to check that K is a totally ordered semigroup
with unit element such that

(i) az g in K implies that there exists v in K with a = Bv

(ii) ~va = vB implies @« = B where «, 3, v are in K.

Further, it follows from these conditions that all elements vy <1 in
K have an inverse in K.

It remains to show that K ~ H(R,) as ordered semigroups where

the isomorphism is given by P&t sl (Here 7, § are elements

in HR), rs~' is an element in H(R;).) We shall show here that the
given correspondence is one-to-one and omit the rest.

Let 75 =78 ie., rs'aR,=1rs"aR, for all a in R, in
particular 7,s7'sbR, = r,s"'sbR, for all b in R and 7bR, = 7.bR;,
b = r,bs’ or rbs’ = r,b for some s in S follows. Comparing », and
r, yields 7, = r¢ or 7, = r.¢ for some ¢ in N and #, = 7%, in H(R).
If conversely 78— = 7,5 in K we get #, = ¥, in H(R) and therefore
rsaRp, = s aR, for all @ in B: If a is in S this is obvious,
otherwise a = sb and bR = r,bR implies 7,s'aR, = 7,5~ 'aR, in that
case. Finally let s be in S\U(R). Then there exists ¢ in R with
sa =ag and ¢ not in S since s is not in N. This shows that
s'aR, D aR, and R, is not right invariant.

If we combine Lemma 5 and Lemma 6 we get the following

result:

THEOREM 2. Let R be a right invariant right chain ring, P a
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orime ideal in R, S= R\P; N={xecR|xa = as,, s, in S for all
acR}. Then:

(1) H(R;) = HS is a totally ordered semigroup with H =
H(Ry)) = HR)/N and S = S§/N; @ = R\N is a prime ideal and R, is
right invariant.

(2) Ry is right invariant if and only if N = S.

With Theorem 2 the equivalence of (1), (2), (3) in Theorem 1 is
proven.

We prove the equivalence of (1) and (4). If H(R) is totally
ordered and j in J(R), then 7 <1 is impossible, since this implies
JR =R, j a unit. Hence jaR C aR for all ¢« in R. Conversely if
R is a right chain ring with Ja € aR for all ¢ in B we must show
that for any nonzero elements 2, ¥ in R either T< % or ¥ < %. If
we assume on the contrary that there exist a, b in R with zaR C
yaR and ybR C 2bR we obtain xa = yav,, yb = xbv, and say a = bs
for v, v, s in J (the case b = as is similar). Then ya = ybs =
axbv,s = xbsv, = xav; = yav,v; and ya = 0 where v,s = sv; for some v,
in R, using (4).

The implication (5) = (4) is obvious. To prove (4)= (5) assume
there is an ¢ in R with Rae & aR and Ja & aJ, but Joa S aR. Then
there exist elements u in U(R), n in J with uaR>DaR and uan = a;
and elements #’ in J, 4’ in U(R) with #’a in aR, but not in aJ, hence
n'auw’ = @. This leads to un'au'n = ¢ and with Ja S aR to a =0,
a contradiction. The equivalence of (1) and (6) follows from Lemma
1(2) and with this Theorem 1 is proved completely.

DEFINITION. A right chain ring R that satisfies the equivalent
conditions of Theorem 1 is called semi-invariant.

Since H(R) is not known even if R is right invariant unless R
is also right noetherian or satisfies some other extra condition (see
[1]) we cannot describe the structure of H(R) for a semi-invariant
ring R. It follows from Theorem 2 that this semigroup is a group
of fractions of a semigroup H = H(R') where R’ is a right invariant
right chain ring with respect to a subsemigroup 7T of H which
satisfies

(1) Iftisin T, h in H and ¢ the unit element in H with
e<h<=t, then h is in T.

(2) Foreverye+#tin T there exist h and &k in H with th = hk
and & not in 7.

(8) hit=hst for t in T, h,, h, in H implies h, = h,.

One sees that A(R), R semi-invariant, not a division ring, is not
a group, but we will show that for every totally ordered group G
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there exists a semi-invariant ring R such that G can be embedded
into H(R).

4. Semi-invariant right chain rings with d.c.c. for prime
ideals. Investigating the condition H(R) totally ordered, we were
led to semi-invariant right chain rings. The valuation semigroup
can then be described using Theorem 2. In many cases we actually
have H(R) = H(R). The reason for this is the result we will prove
in this section: Semi-invariant right chain rings with d.c.c. for
prime ideals are right invariant. We recall that an ideal P in R is
called completely prime if ab in P implies @ or b in P and P is
called prime if aRb in P implies a or b in P where a, b are elements
in R. It follows from a result of Thierrin ([10]) that a prime ideal
P is completely prime if ¢* in P implies a in P.

LEMMA 7. Ewery prime tdeal P in the semi-invariant ring R
18 completely prime.

Proof. Assume a’in P and @ not in P. Then there exists ¢, in
R with at,a not in P and ¢, in R with at,(at,a) not in P. We can
assume R = P and a in J. Hence a(t,at)a = a*» for some » in R
using (4) of Theorem 1. This contradiction proves the lemma. []

The next result shows how to produce certain prime ideals.

LEMMA 8. Let 2z be an element in R, a semi-invariant ring.
Then D = Nz"R s a prime ideal.

Proof. We can assume that z is in J. Then D is a right ideal
and we will first show that a* in D implies ¢ in D for ¢ in R.
Assume o is not in D, then « is in J and aj = 2" for some natural
number % and j in J. But then ajaj = a*j'j = z** is not in D con-
tradicting a® in D. It remains to prove that D is a left ideal. Let
2 be in D and x = 2", ¢, in J follows. For = in R we get rxra =
rerz*q, = 2"vq, for some v in R. This shows that (rx)* is in D and
hence rx in D. ]

The next theorem will be proved in three steps, Lemmas 9-11.

THEOREM 3. A semi-invariant right chain ring with d.c.c. for
ideals 1s right invariant.

Let a be an element in the semi-invariant right chain ring R.
By (56) Theorem 1 we have either Ra & aR or Ja & aJ. In the first
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case we are done and in the second we define a mapping ¢ from the
set of prime ideals P # R into itself by defining P¢ as the smallest
prime ideal with Pa < aP?¢. We will show that either J? = J which
implies Ra S aR or J*CJ and {J*'} is a strictly decreasing chain
of prime ideals of R.

LEMMA 9. Let J = J? and J = mR, then Ra S aR.

Proof. We have ma = am”v for some unit » in R, some integer
Ik, some generator m of J, since as a right ideal J¢ = J using
Lemma 8.

If Ro &£ aR there exists a unit w in B and an element ¢ in J
with ua =aq. Since ¢ is in J and u*"a = a¢*™* we obtain ¢*'*"RCm*R
and we can assume R Cm*R and ¢ = m*vt with ¢ in J. With
us = m, ma = am*v, mat = am*vt = aqg = uwa we obtain sat = a, s, ¢
in J and a = 0 follows.

LEMMA 10. Let R be semi-invariant, J not finitely generated
as a right ideal and 0 = a an element in R with Ja S aJ?, J? = J.
Then Ra < aR.

Proof. Assume j =0 in J. We want to find », s in J with
ra = as and sR 2 jR. Let P= Nj"R. By Lemma 8, P is a prime
ideal and PcJ. Since J? = J there exist elements 7, s, in J with
s; not in P such that r,a = as,. Either s,R 2 jR and we are done
or there exists an n with jRD-..--Dj*'RD>s,R2 j"R. Hence s,g = 5~
for some ¢ in B. We choose an element z in J with », = z™v with
v in J and some m > n. This is possible, since J is not finitely
generated: Let rRc xR =+ RE. We obtain », = 2y for », y in J.
Choose z, in J with z,RDaR and z,RDyR and 7, = zu, follows with
u, in J. Repeating this process yields an element z with », = 2™,
z, v in J, m > n. Consider za = az’, 2z, 2/ inJ. We claim 2’R 2 jR.
Otherwise jw = 2’ for some w in J. But ra = z™va = az'™ = as,
for some element ¢’ in J with va = av'.

Hence s, = 2'™v" = (Jw)™" = 5™bv’ for some element b in B. This
implies 7" = s, = j™bv'q, a contradiction, since m > n. We conclude
that we have found an element » =2, s =2 with sR2 jR and
ra = as for the given element 5 in J.

If Ra & aR there exist a unit v in B and an element ¢ in J
with wa = at. By the above argument we have s, r in J with
ra = as and sR D tR. Hence, sv = t for some v in J and rav = asv =
at = ua. We obtain @ = wrav = ak, & in J and a = 0, a contra-
diction.
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REMARK. Under the hypothesis of Lemma 10 we have proved
that J* = J is even the smallest two-sided ideal I satisfying Ja & al.

LeMMA 11. Let R be semi-invariant, a in R with Ja & aJ? and
J*cJ. Then J*"7 cJ¢ for all n.

Proof. We will write J™ instead of J¢*. Then J*t? & J™ and
we assume 7 minimal with J™ = J®", Let » be in J""\J™,
ra = as with s in J™. Then there exists a ¢ in J™ with ga = a¢’
and ¢’R D s*R for some k, since otherwise J**' = J™ C Ns*RcJ™.
After replacing » by #* if ¥ > 1 we can assume that there is an #
in J*NJ" with 7a = as and an element ¢ in J™ with ga = aq¢’ and
¢R>OsR. Hence ¢'t = s for some ¢ in J and v = ¢ for some % in
J®, This yields ra = as = aq¢'t = qat = rvat = rav’'t with »' in J
and the contradiction ra = 0 proves the lemma. ]

5. Examples, problems and comments. We begin with an
example of a semi-invariant right chain ring R such that H(R) con-
tains G where G is a given totally ordered group.

ExAMPLE 1. For very totally ordered group G there exists a
semi-invariant right chain ring R such that H(R) contains G.

Let K = @,.2G; where G, =~ G for all teZ. K is an ordered
group with the lexicographic ordering. Next, let L = {t"kln e Z, ke K}
with ¢k, - t™k, = t"*™(k{™k,) be the ordered group where k = (g,) and
E™ = (97 with ¢} = ¢9,.n.. Further ¢k, > t™k, if and only if » > m
or n =m and k, >k, in K.

Let H= {t"keL|t"k =z ¢,k = (9;) with n =0 and g, =15, for
17> 0}. Then H is a totally ordered semigroup with unit element
and both cancellation laws. Further, H is naturally ordered in the
sense that A, = h, for h, in H holds if and only if there exists an
element h = ¢ in H with h, = h,h. Therefore it is possible to con-
struct the generalized power series ring.

R ={a =3 2z0a,heH a,cR and T(a) = {h|a, + 0}
well ordered in H} .

R’ is a right invariant right chain ring with A(R') = H ([7]).

To the subsemigroup M = {t(g,)|g; = 15, for ¢ == 0} there cor-
responds an R’-convex subsemigroup in HA(R') and a prime ideal P
in B. We put R, = R. Since for o in M we have ht = th' with
%’ not in M unless h = 1, we conclude that H(R) ~ HM-* = H U M-
It follows that G can be embedded into H(R) where R is a semi-
invariant right chain ring. We observe that the right ideal «,R is



RIGHT CHAIN RINGS 303

not a left ideal and Rz, is not a right ideal. On the other hand
we know ([2]) that for every a in o semi-invariant right and left
chain ring either aR or Ra is a two-sided ideal.

ExaMPLE 2. In our next example we construct a right chain
ring R such that H(R) is not totally ordered, but that the subgroup
U(R) = {#|w in U(R)} of H(R) is totally ordered with respect to the
order as defined in H(R). This condition

(U) U(R) is totally ordered

is therefore weaker than the condition H(R) totally ordered and
implies among other things that for a right chain ring R with (U),
a in R, there exists a unit ¢ in U(R) with ac in R (see Lemma 12
(ii) below). The basic idea of this construction has been used in
[9], [2] and [6]: Let R, be a right and left chain ring, D = Q(R)
the division ring of quotients of R,, H a totally ordered semigroup
with unit element that satisfies both cancellation laws. Further,
let h, = h, hold for elements h,, h, in H if and only if A, = hh for
some h in H. Finally, let 7 be a mapping from H into the semigroup
M(D) of monomorphism from D to D with z(h;h,) = t(h)z(h;). One
then can form the generalized power series ring D{{H}}={3,z,d,=a|h
in H, d, in D, T(a) = {h|d, # 0} well ordered in H} where multi-
plication is defined by x;;, = @, and da, = 2,d*». The subring R
of D{{H}} consisting of those elements a with d, in R, is a right
chain ring where ¢ is the unit element in H. It does not seem to
be easy to determine H(R) in general.

To consider a special case let F' = Q(x, ), the field of rational
functions in the two indeterminates « and y over the field Q@ of
rational numbers. Then F' contains R, = Q[z, ¥].,, a chain ring one
obtains by localizing the polynomial ring Qfz, y] at the prime ideal
(). We form the skew power series ring F'[[¢, z]], where 7 is the
automorphism of F exchanging « and y. Finally, R consists of all
those power series >, t'fi(x,y) with f(x,y) in R,. The prinecipal
right ideals of R are of the form t"2™R with » =0,1,2, --- and m
in Z, but m=0 if n=0. The semigroup I-?(R):{t%"lfnz

o~ ~
0,1,2 ---;m, kin Z and m = 0 if n = 0}. It is fma™y®h > (rgmeyh
if n, > n, or n, = n, and m, > m, with k&, = k, or n, = n,, and m, = m,
and %k, >k, Finally, we have UR) = {(J*, ke Z} = Z as ordered
groups. Therefore, H(R) satisfies condition (U), but is not totally
ordered: %y~ and 1 for example cannot be compared.

We conclude this paper with some observation for right chain
rings that satisfy condition (U).

LEMMA 12, Let R be a ring satisfying condition U.
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(i) Let a, b in R with aR = bR. Then either & < <borbd<a.

(ii) For any a in R, R local, exists x in R 'wzth aR = zR.

(iii) Let R be a local ring and aRDbR. Then there exists for
every ¢ with xR = aR a y in R with & < ¥ and yR = bR. Similarly
for every y in R with yR = bR exists x with xR = aR and T < 7.

Proof. (i) is obvious, using condition (U). Statement (ii) is
correct if @ is a unit. We can therefore assume a in J, a not in
R. Hencel + aisin U(R)\R and (1 + a)(l =A+2)l+a)=1
for some 2inR. Butl+zandzarein Randa(l +2) = (1 + z)a =
—z is in B. Since aR = zR, (ii) follows.

To prove (iii) assume b = xp. Using (ii) there exists a unit u
in R with pu in R and bu = xpu implies # <bi#i. If y = ap the second
part of (iii) is correct for p in R. Otherwise we obtain with (ii):
A+ p)ipisin B, y = all + p)(1 + p)~'p and & = a(l + p). ]

PROBLEMS.

(1) Describe all rings R for which H(R) satisfies (U). (This
class of rings contains all right invariant, in particular all com-
mutative rings.)

(2) Which conditions characterize the semigroups S with S =
H(R), R a ring or additionally: R a right chain ring.

(3) Find the class of rings R with H(R) lattice ordered.
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