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F. R. DEMEYER

An action of the automorphism group of a commutative
ring on its Brauer group is given. The action is character-
ized cohomologically. Relations with the Teichmuller cocycle
map and the Schur subgroup are pointed out.

In [13] G. J. Janusz gave an action of the automorphism group
of a field K on its Brauer group B(K). For number fields he
characterized this action in terms of Hasse invariants and applied
his results to the problem of the existence of an outer automorphism
of the rational group algebra of a finite group.

Here we give an action of the automorphism group of a com-
mutative ring B on its Brauer group B(R) and describe the action
cohomologically. Let A be an Azumaya R-algebra and let ¢ be an
automorphism of R. Define a new R-algebra ,A by letting 4 = ,4
as rings and with R-module action given by rxa¢ = ¢~(r)a for rc R,
xe A where multiplication on the right is in A. Proposition 2 is
the assertion that the correspondence A — ,A induces an action of
the group Aut (R) of automorphisms of B on B(R).

Let L be a finite Galois field extension of K with finite Galois
group G and let Aut (K: L) be the group of automorphisms of K
which can be extended to L. In [11] S. Eilenberg and S. MacLane
gave an action of Aut(K:L) on H*G, L*) for n» = 0. This action
corresponds under the natural identification between B(L/K) and
H¥(G, L*) with Janusz’s action on B(L/K). For a commutative ring
R, B(R) is given as the torsion subgroup of HZ(R, U) [12] and
Hi(R, U) is a limit of Amitsur cohomology groups [17]. For a
faithfully flat commutative extension S of KB we give an action of
Aut (R: S) on H*(S/R, U) (Amitsur cohomology) and show this action
commutes with the natural homomorphism given, for example, in
[17] from B(R) into H%(R, U). We study the problem of extending
an automorphism from R to an R-algebra A and its relation to
normal algebras and the Teichmuller cocycle map. We show that
if K is a field of characteristic = 0 then Aut (K) must always leave
the Schur subgroup of B(K) invariant, and we calculate some
examples. Throughout all unexplained terminology and notation
will be as in [14]. I would like to thank G. J. Janusz, D. Saltman,
and D. Zelinsky for helpful remarks.

1. Let R denote a commutative ring, ¢ ¢ Aut (R), and let M be
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an R-module. Form the new R-module ,M which is equal to M as
an abelian group and with R-action given by 7*m = ¢~ '(r)m for all
re R, meM where multiplication on the right-hand side is in M.
This action is well known, see for example [9]. If A is an R-algebra
then ,A is the R-algebra equal to 4 as a ring and ,4 as an R-
module.

LEMMA 1. Let A and B be R-algebras and M, N be R-modules.
Let o€ Aut (R), then

(@) (A®B)=,AQ.B.

(b) Homg (M, N) = Hom, (,M, ,N).

(e) M 1is an R-progenerator if and only if ,M is an R pro-
generator.

(d) A is a separable R-algebra if and only if ,A is a separable
R-algebra.

() If o induces an automorphism & of R.1 then A= ,A as
R-algebras if and only if & extends to a ring automorphism of A.

Proof. The isomorphisms in (a) and (b) are the identity map,
(e) is well known (p. 115 of [9]).

For (d) the separability of A over R is equivalent to the ex-
istence of an idempotent ec AX A, e=>r,a,®Db, such that
Sriab,=1and A RQx—2x @ 1e=0 for all xeA. Let ¢,=>7,a;
b, in ,LAX® ,A° then we still have >, ab,=1. Let ¢: AR, A" —
AR A by ¢sxRY) =2Xy. Since AR A’ = ,(AR 4, as rings it
follows from (a) that ¢ is a ring isomorphism. For any xz€, A we
have

@® De= 300, @b — 3 20, @b, = 3,0, ® bz~ 3,0, @ b
=1 x)e .

This proves (d).

For (e) assume A = ,A and let f: ,4A — A be the given R-algebra
isomorphism. Define 7 by z(a) = f(a) for all a € A(4 = ,A as rings).
Then ze€Aut(4) and for any reR, z(r-1) = f(r-1) = fle(r)*1) =
o(r)-f(1) = 6(rl). Conversely, assume there is an element z¢
Aut (4) extending . Define f:,A— A by f(a) = z(a) for all a e A.
For any re R and a€,A we have f(r+a) = f(e™'(»)-a)=t(c™"(r)-a)=
67 (r-1)-7(a) = r-7(a) = r- f(a). It follows that f is an R-isomor-
phism.

We have let Aut (R: A) be the group of all automorphisms of R
which can be extended to A, it follows from (e) that Aut (R: A) =
{ceAut (R)|A = ,A as R-algebras}. If A is a faithful R-algebra
and % is the group of all automorphisms of A sending R into itself
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it also follows from (e) that Aut,(A4) is a normal subgroup of &
with factor group Aut (R:A4).

If A is an Azumaya (=central separable) R-algebra let [A]
denote the class of A in B(R).

PrROPOSITION 2. Let R be a commutative ring, o€ Aut (R), and
A an Azumaya R-algebra. The correspondence A — ,A induces an
action ¢-|A| = |,A| of Aut (R) as a group of Automorphism of B(R).

Proof. Since Center (4) = Center (,4) it follows from Lemma
1(d) that ,A is an Azumaya R-algebra if A is an Azumaya R-algebra.
If P is an R-progenerator then ,P is an R-progenerator by Lemma
1(¢). From Lemma 1(a) and (b) we have ,(4 Q Hom; (P, P)) = ,AQ
Homy (P, ,P) so the given action on B(R) is well defined. By
Lemma 1(a) the action of o6 on B(R) is a homomorphism of B(R).
If zcAut (R) then ,.A = ,((A) as R-algebras by ¢ where ¢(a) = a.
Thus the inverse of ¢ is ¢ and ¢ acts as an automorphism of
B(R). Also, o(c-|A]) = o7r-|A|. It follows that Aut(R) acts as a
group of automorphisms of B(R).

Let S, T be commutative, faithfully flat R-algebras, let o¢
Aut (R) and let f: S— T be an extension of 6. We show jf induces
an isomorphism from H*(S/R, F') to H¥T/R, F') (Amitsur cohomo-
logy) when F is the units functor denoted U or the functor Pie
which associates to a commutative ring its group of isomorphism
classes of invertible projective modules. Then we show that if g is
another extension of ¢ from S to T then ¢ induces the same isomor-
phism on cohomology groups f does. Notation is as on pg. 119 of
[14]. Let f:S"—S* by f*(s,® - ®s,) = f(8) X -+ Q f(s,) for
all s;€8. Since flzeAut(R) it follows that f™ is a well-defined
ring isomorphism which extends ¢. The restriction of f* to U(S™)
is a group isomorphism from U(S™) to U(T") which we also denote
7" Let we U(S™ and write u =>7%:5,,& - Qs,, with s;;e8S.
Then

o () = §f<s“>® - ® f(5)

( De;(f (80,0 ® f(8i,n)

- f< S (D ® - @)
= P, )

It follows that f induces an isomorphism from H*(S/R, U) to
H*TIR, U) by v— f**(v) for any n-cocycle v. We denote the
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induced isomorphism by fr. If zeAut(R) and ¢ is an extension of
z from T to another commutative faithfully flat R-algebra W then
9% fe = (gf)% since this is the case on the cocycle level. Thus if g¢
is another extension of ¢ to an isomorphism from S to T then
f=9@™f) and g7'f € Aut, (S). It is a result of Amitsur (see, for
example, 3.2 of [2]) that (¢7'f)% is the identity on H™(S/R, U) so
fr=g% Thus ¢ induces an isomorphism from H"(S/R, U) to
H*(T/R, U). In particular, it follows that we have defined an
action of Aut(R:S) on H*(S/R, U) for all n = 0.

Let S be an étale R-algebra and let o ¢ Aut (R). Then ,S is
étale and f: S—,S by f(s) =s for all seS is an extension of o.
Thus ¢ sends elements of H"*(S/R, U) to elements of H*(,S/R, U).
From what we have seen it is routine to check that Aut (R) acts
on lim H*(S/R, U) where the limit is taken over all étale extensions

S of R. Thus Aut (R) acts on H*(R, U).

We proceed as above with the functor Pic. Keeping the previ-
ous notation of this section the isomorphism f: S — T which extends
o induces an isomorphism from Pic(S) to Pic(T) by f(E|) =
IT @ E| for each class | E| in Pic (S). Now let |E|ePic(S™), then

__’]'n—l(fn(IED) = A'n—l(] Tn ®bnED
- ﬁj'l’ic (T @ B) [~

= i @@ @m

— ﬁlf Tin+1 ® EI(—n'i“l
i=1 s

- i @s@u

i=1 sntl ST
= 1 £"¥|Pie (e)(&) [~
= fu( B .

In this calculation S is an S™algebra via ¢, and T7* is a
T"algebra by e, Also T"™ is an S™*-algebra by f*™. It now
follows exactly as in case “U” above that ¢ induces an isomorphism
from H"(S/R, Pic) to H"(T/R, Pic) and that Aut(R:S) acts on
H*(S/R, Pic). Moreover, Aut (R) acts on lim H*(S/R, Pic) where the
limit is taken over all étale extensions S oft' R so Aut (R) acts on
H2R, Pic).

THEOREM 3. The natural monomorphism (given for example in
[17]) from B(R) to H:Z(R, U) commutes with the action of Aut (R).

Proof. First, following [17] pg. 153, we describe . Let A be



ACTION OF THE AUTOMORPHISM GROUP 331

an Azumaya R-algebra, and let S be an étale R-algebra such that
|A|e B(S/R). Then A® S = Homy (P, P) for some S-progenerator
P. Define ¢: Homges (S X P) — Homges(PQ S) by the commutative
diagram

S® AR SZ5 Homye, (S® P)
(4) 7®11 1¢
A®S® S —> Homges (P® S)

where 7 is the given isomorphism from A ® S to Homg (P, P) and
v is the switch map. From the Morita theorem (Proposition 3.3,
pg. 19 of [9]) ¢ is induced by an S S-isomorphism S& P —
(PR S)Q@sss I where |I]ePic(S®S). By Proposition 13.13 of [15]
we can, by extending S, assume I=SQ® S so ¢ is induced by an
isomorphism p: SQ P— P® S. The isomorphism p induces three
S &® S ® S-isomorphisms: 0: SQSKXP—-SRXPXRS, 0.: SQSRKP —
PRS®S, and 0o SQPRS—-PRS®S where p, = p,0,. Thus
0:0:0; is multiplication by a unit u(z, o) in S®S® S. The corres-
pondence A — u(z, p) induces the monomorphism )\ from B(R) into
H%(R, U). Given S as above and o< Aut (R) we have an action of
o from H*S/R, U) to H*(,S/R, U) and it suffices to compare the
image of |,A| in H*(,S/R, U) with f’u(z,p)). Now ,AQ,S=
(A® S) = Homg (P, P) = Hom,(,P, ,P) and the composition of these
isomorphisms is z. The diagram corresponding to (4) for ,A is

S®.A® .8 E Hom, gs.5(,S ® .P)

(5) r®ll l¢
A®R,5®,5 2L Hom g s((P®.S) .

One can check that the S& S isomorphism p: SQ P— P& S which
gave rise to ¢ in (4) also is an ,S® ,S isomorphism from ,S& ,P
to ,P ® ,S which gives rise to ¢ in (5) (same ¢!). Therefore, p;'0,0,
is multiplication by the unit f*(u(z, o)) in ,S®,SKQ ,Son SR, SR
L. That is, for any 2e¢,SQ .S ,.P, 0;0:0.2) = u(z, p)x =
fi(u(z, p))-x. Therefore, ,A corresponds to f*(u(z, p)) in ,S®,.SQ
S which proves the theorem.

Let S be a commutative finitely generated projective R-algebra.
There is an exact sequence of Amitsur cohomology due to Chase
and Rosenberg [2] which is

0——HY(S/R, U) —*- Pic (R) -2~ H'(S/R, Pic) —— H*S/R, U)

(6) !
5 (S/R) —— H*(S/R, Pic) ——> H¥S/R, U) .
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The maps in this sequence have been explicitly given in [16].

THEOREM 7. The homomorphisms in the exact sequence (6) of
Chase and Rosenberg commute with the action of Aut (R:S).

Proof. Let gecAut(R), let S and T be commutative finitely
generated projective R-algebras and let f be an extension of ¢ from
S to . Then we obtain the diagram

0 — HY(SIR, U)— Pic (R) "= HY(S/B, Pic) - HYS/R, U) - B(S/R) —— H'(S/R, Pic) ~— H¥S/R, )
(8) lf L lPic © lf‘; lf H lB(w 1& lf;
0— H\(T/R, U)— Pic (R)~2 HY(TIR, Pic) -1 HT/R, Uy - (B(TJR)) —— H'(T|R, Pic) — H'(T/R, U) .

To prove the theorem it is sufficient that this diagram commutes.
The method of proof is to write down each of the maps explicitly
following [16] and to check the commutativity of the diagram on
the coeyele level. This is a routine calculation. We carry out here
only the proof of B(c)y = vfi. This will show the natural homo-
morphism v-H*S/R, U) — B(S/R) commutes with the action of
Aut (R: S).

Let ue US®S) be a 1-cocycle and let F={xecS|1RQr=2Q
1-4}). Then E represents an element in Pie (S/R) and « is induced
by the correspondence u — E. Now fi(lu]) = |f*w)| in H(T/R, U).
Let F={zecT|1Q®zx=2Q1-fA(u)}. Define +: ,E—F by )=
f(x) (note + is well defined since ,E = E as abelian groups) for
reR and wxe E; prxx) = a7 (1)) = flo7'(r)x) = rflx) = rg().
Thus afi(|u]) = | E| = Pie (o)a(|u)).

Now fi(u) = > fla) ® f(b) ® fle)e UT?. Let Q=TT be
the projective T-module obtained by letting 7 act on the first
factor. Define T® T isomorphism k: T &Q — QRQT by A(zQRQyRz)=
S fla)r® fle)z Q@ f(b)y for all z,y,z in T. The isomorphism 4
induces an isomorphism ¢(f*(u)): Hom,g, (TR®Q, T ®Q)—Hom,g, (TR,
T®Q by s(f'(w)(o) = hoh™ for all pe Hom,s, (TR Q, T ® Q). The
Azumaya algebra A(f*(u)) = {w € Hom; (Q, Q)|4(f*(u))e (W) = e(w)} is
a representative of the class vfi(Ju]) in B(S/R). The algebra ,A(w)
represents the class B(o)y(Ju|) so it suffices to show A(f*(w)) = .4
as R-algebras. Now f° induces an isomorphism from Homgss (SR P,
S®P) to Home,(T®Q, TR®QR) by p— ffo(fH5* for all pe
Homgps SQ P, S® P), and f* induces an isomorphism .» from
Homg (P, P) — Hom, (Q, @) by (w)= f*w(f*~* for all w € Hom, (P, P).
We show « is a ring isomorphism from A(u) to A(f*(u)). Let we
A(u). We need to check that (w) e A(f*(w)). But
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(P u)e(p(w)) = ¢(f*(w))e(ffw(f?))

= ¢(f*(w) fre(w)(f)~

= h(fe(w)(f*)h

= ¢ w) fPe(w)(f*)7 P (w) T
(where 7 is twist map which exchanges
the last two factors)

= Tffue,(w)u(f'r

= forue,(w)yuc(fH

= flge(w)g ()

= flo(w)e,(w)(f)™

= fla(w)(f)™

= &(f (w)(f)™)

= &y (w)) .

For any reR and we, A(u) we have (r+w) = flo()w(f)* =
rfPw(f5) = ry(w) so 4 is an R-isomorphism from ,A(u) to A(f*(u)).

COROLLARY 9. If S is a commutative finitely generated projec-
tive R-algebra and Pic(S) =Pic(S® S) =0 then v is a matural
Aut (R: S) isomorphism from H*S/R, U) to B(S/R).

COROLLARY 10. Let S be a Galois extension of R, and assume
S has no idempotents other than 0 and 1. Let G be the Galois
group of S over R. Then the homomorphisms in the seven-term
sequence of Galois cohomology

1— HYG, U(S)) —> Pic (R) — Pic (S)* — H¥G, U(S))
— B(S/R) — H\(G, Pic (S)) — H*G, U(S))

commute with the action of Aut(R:8). In particular, if Pic (S)=0
then H*G, U(S)) is isomorphic to B(S/R) by an isomorphism which
commutes with the action of Aut (R: S).

Proof. If S is a Galois extension of R with group G and S
has no idempotents other than 0 and 1 then Autp(S) = G. Thus
the group Z of automorphism of S leaving R setwise fixed acts on
G by conjugation. If 0eZ and te€G we let 7° = o7'zg. Assume
M is a &-module. Let fe Z*(G, M) be a Galois m-cocycle and let
ofe Z"(G@, M) be defined by of(z,, ---, 7,) = o[f(z}, -+, 73)] forz,€ G
and =1 and let o-m = o(m) for me Z%G, M). Then a direct
calculation gives 9,0-f = 0-0,f for all » =0. Thus & acts on
H*G, M) with the action induced by the correspondence f— a-f.
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By a tedious calculation with cocycles one can check that if ge¢@
then f and of represent the same class in H*(G, M). It follows
that Aut (R: S) acts on H*(@G, U(S)) and H*(@G, Pic(S)) for all n=0.
This action is given in [11] where these assertions are verified when
S is a field. Proofs are the same in the general context.

Next we check following notation in [15], p. 120-125, that the
actions we have defined on H*(S/R, F') and H"*(@, F') correspond to
one another. The isomorphisms ¢,:S"*— K*G,S) given by
¢ax(s @ ot ® 87»)<Tky ) Tn) = 3171(32)7:172(33) Tyt ’T/n(sn—H) for $; € S and
7, € G induce a homomorphism F'(¢,): F(S**) — F(K(&, S))=K"(G, F(S))
which induces a morphism of complexes for any additive functor
F'. This morphism of complexes induces homomorphisms r,: H*(S/R,
Fy— H™G, F(S)). Let ge@G, then

0-95,”(31 ® s ® Sn)(z-h Tty T%) = 0‘[317(11(32) ° 'Tll" ¢ 'TZL(S');+1)]
= 0(8)T,0(8y) * * Ty * +T,40(Spyr)
= $,0(5,&Q -+ & 8,41)

Thus if F is the units functor U then the induced homomorphism
v H*(SIR, U) — H™G, U(S)) is an Aut (R:S) homomorphism. In
a similar way the induced homomorphism «,: H*(S/R, Pic) —» H™(G,
Pic (S)) can be checked to be Aut (R: S) homomorphisms since Pic (¢,):
Pic (S***) — Pic (K™(G, S)) is an Aut (R: S) isomorphism.

Now the result is a consequence of Theorem 7 and Corollary
5.5 of [1] which connects the exact sequence of Amitsur cohomology
with the exact sequence of Galois cohomology.

We saw before that Aut (R) acts on Hi(R, U). We now expose
the corresponding result in Galois cohomology. Let R be a com-
mutative ring with no idempotents other than 0 and 1 and let 2 be
the separable closure of R (see p. 99 of [9]). For any o¢eAut (R)
it is easy to check that ,Q is another separable closure of E. By
uniqueness of the separable closure we know Q2 = ,2 as R-algebras.
By Lemma le, it follows that Aut(R) = Aut(R: Q). Let S be a
Galois extension of R in £, then ,S is a Galois extension of R in Q2
and if G is the Galois group of S then G is also the Galois group
of ,S. Let f be an extension of ¢ from S to ,S and let ¢ be an
n-coeycle in Z*(@, U(S)). There is a corresponding mn-cocycle h in
ZYG, ULS)) by h(zy, .-+, 7.) = flg(f'euf, - -+, fF7T.f).  As with
Amitsur cohomology ¢ induces an isomorphism from H*(G, U(S)) to
H*G, U(,S)). This action is compatible with the maps in the direct
limit system 11m H™G, U(S)) where the limit is taken over all Galois

extensions S of R in 2. Thus Aut (R) acts on H§, (R, U), and this
action commutes with the natural homomorphism from H¢.(R, U)
to B(R).
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Let & be the subgroup of Aut(A) which leaves R-1 setwise
invariant. If Center A = R.1then & = Aut(4). If A is a faithful
R-algebra and 7 is the restriction map from < to Aut (R) then
from Lemma le the sequence

(11) 1— Aut, (A)—— & —" Aut (B: 4) — 1

is exact.

Now the splitting of the exact sequence (11) over the finite
subgroups H C Aut (R: A) for an Azumaya R-algebra is considered.
The given sequence splits over H in case there is a monomorphism
s: H— Aut (A) such that »s = 1.

THEOREM 12. Let A be an Azumaya R-algebra, let H be a finite
subgroup of Aut(R:A), and let K= {reR|z(r) for all TecH}
Assume R is a Galois extension of K with group H, then the follow-
ing are equivalent.

(1) The sequence (11) splits over H.

(2) There is an Azumaya K-algebra B such that A = R@x B
as R-algebras.

(8) A is a mormal algebra and the class of A in B(R) is in
the kernel of the Teichmuller cocycle map [3].

Proof. If A= R@:;B then each element o< H induces the
K-automorphism ¢ ® 1 of A and the splitting map is s(o) =0 ® 1
so 2—1. Next assume the existence of a splitting map s. Then
there is a group of automorphisms H' of A whose restriction to R is
H. In this case all the hypotheses of Lemma 2 of [6] are satisfied.
Let B={acAlo(a) =a for all se H'}. In the proof of Lemma 2
of [6] it is shown that B is an Azumaya K-algebra and R @x B=A
by r®@b—1rb for all reR, be B so 1 —»2. An Azumaya R-algebra
A is called normal if H is a subgroup of Aut(R: A). By Corollary
5.2 of [3], the class in B(R) represented by a normal algebra A has
a trivial image under the Teichmuller cocycle map if and only if
there is an Azumaya K-algebra B such that A= R®;B as R-
algebras. Thus 2 — 3.

We saw in Lemma 1 that if o Aut (R) then o extends to an
automorphism of the Azumaya algebra A if and only if A= ,A as
R-algebras. We have let Aut (R: A) = {ccAut (R)|A = ,4}. When
does Aut (R: A) = {ccAut (R)||A| = |,A]}? We first have the follow-
ing positive result.

ProrOSITION 13. Let R demote a local ring or the rimng of
polynomials in one variable over a perfect field. For any Azumaya
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R-algebra A and any o€ Aut (R) we have A= ,A as R-algebras if
and only if the class of A and ,A are the same in B(R).

Proof. If A = ,A as R-algebras then |[A|=|,A|. Conversely,
Corollary 1 of [7] implies A = M,(D) where D is the unique Azumaya
R-algebra with no idempotents other than 0 and 1 in the same class
as A in B(R). Employing Lemma 1 we have the chain of isomor-
phisms, ,A = (D ® Homg (R", R") = ,D @ Hom; (,R", ,R™) = M,(,D).
If |A|=|,A| then by the uniqueness of D we have D= ,D so A= ,A.

Now we outline an example which shows the previous proposi-
tion fails even when R is a Dedekind domain. Let R be a Dedekind
domain and let I be a fractional R-ideal. Let M =R@ I and A =
Hom, (M, M). Then A is an Azumaya R-algebra. Let ¢eAut(R),
then ,A = Hom; (.M, ,M) by Lemma 1. By Moritia’s theory (%7,
pg. 37 of [9]) we have A = A if and only if ,M = J & M for some
fractional R-ideal J.

But M=R®,Jand JQM=RPIJ? so M= ,M if and only
if there is a fractional R-ideal J so that ,I = IJ®:. Now A is always
equivalent to ,4 in B(R) and so to give a counter example to the
conclusion of Proposition 13 if R is a Dedekind domain it suffices to
give a Dedekind domain R such that Pic (R) is the group of order
4 and exponent 2 and so that Aut R acts nontrivially on Pic (R).
Such an example is easy to construct using results of L. Claborn
[5]. It follows that under the action of Aut(R) on B(R) we have
B(R)¢ is guaranteed to consist of those classes in B(R) represented
by normal algebras only when the hypotheses of Proposition 13 are
satisfied.

ProOPOSITION 14. Let K be a field of characteristic = 0. Then
the Schur subgroup is an Aut (K) invariant subgroup of B(K).

Proof. Let K be a field of characteristic = 0. A ecyclotomic
algebra is a crossed product over K of the form 4K¥1, G, f)
where f is a 2-cocycle on G with its values in the eyeclic group
generated by ¥ 1. The Schur subgroup of B(K) consists of those
classes in B(K) represented by a eyclotomic algebra [19]. If ce¢
Aut (K) then ogcAut(K: K¥1) and A4K¥1, G, f)=4K¥1, G,
o-f). But o-f(z, p) = o[f(z°, p°)] so the values of o-f are in the
nth roots of unity and 4(K ¥'1, G, o- f) is another cyclotomic algebra.
Thus Aut (R) leaves the Schur subgroup of B(K) invariant.

Finally, let R = R[z, yl/(xy —1) where R denotes the real
numbers. Then B(R) = Z,D Z, [10]. Let S=C®:R, then S is a
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Galois extension of B with Galois group G of order 2 with generator
of G denoted z. Let oeAut(R) be given by o(x) = —2 and o(y) =
—y. Let A(S: G: f) be the crossed product with f(z,7) = . Then
4(S: G: f) represents an element in B(R) of order 2 and ,4(S: G: f)=
AS: G:o-f) where o-f(r,7) = o(x) = —«. Thus ,4(S:G: f) repre-
sents an element in B(R) inequivalent to 4(S:G: f). The crossed
product 4(S: G: g) with ¢(z, ) = —1 represents a nontrivial element
in B(R) such that ,4(S:G:g) = A(S:G:g) for all ce B(R) so the
image of Aut (R) in Aut (B(R)) has order 2. Not every automorphism
of B(R) can be represented by an automorphism of R.
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