Pacific Journal of Mathematics

THE NUMBER OF SUBCONTINUA OF THE REMAINDER OF THE PLANE

ERIC KAREL VAN DOUWEN

Vol. 97, No. 2

February 1981

THE NUMBER OF SUBCONTINUA OF THE REMAINDER OF THE PLANE

ERIC K. VAN DOUWEN

Denote the Euclidean plane by Π , and for a completely regular space X denote its remainder $\beta X - X$ by X*. We will prove that Π^* has 2^c pairwise nonhomeomorphic subcontinua by finding a family \mathscr{X} of nondegenerate subcontinua each of which has a unique cut point, and then finding 2^c members of \mathscr{X} which are pairwise nonhomeomorphic because their cut points behave differently. It is of interest that the second part uses a method of Frolik originally invented to prove that X^* is not homogeneous for nonpseudocompact X.

Denote the half-line $[0, \infty)$ by H. It is well-known that H^* and (\mathbb{R}^n) , $(2 \leq n < \omega)$, are continua, [6, 6L]. Evidently, H^* embeds in $(\mathbb{R}^n)^*$, $(1 \leq n < \omega)$, and $(\mathbb{R}^m)^*$ embeds into $(\mathbb{R}^n)^*$, $(1 \leq m \leq n < \omega)$. It was announced in [4] that H^* has at least 5 pairwise nonhomeomorphic nondegenerate (proper) subcontinua. Recently Winslow, [9], proved that $(\mathbb{R}^3)^*$, hence $(\mathbb{R}^n)^*$ $(3 \leq n < \omega)$ has 2° pairwise nonhomeomorphic subcontinua by algebraic means which give no information about $(\mathbb{R}^2)^*$. We here show that $\Pi^* = (\mathbb{R}^2)^*$, hence $(\mathbb{R}^n)^*$, $(2 \leq n < \omega)$, has 2° pairwise nonhomeomorpic subcontinua by topological means which give no information about H^* . After this paper was written I received Browner's (neé Winslow) [3], where this result also was obtained, with totally different means.

We use ω for the nonnegative integers, and identify Π with the complex plane, so that $\omega \subseteq H \subseteq \Pi$. Throughout – denotes the closure operator in βX , with X being clear from the context.

1. Basic facts about βX . We here collect basic facts about βX needed in this paper. They are often used without explicit mention.

If X is normal, then $\overline{F} \cap \overline{G} = (F \cap G)^-$ for every two closed $F, G \subseteq X$.

If A is closed and C^{*}-embedded in X, in particular if A is closed in X and X is normal, then βA may, and will, be identified with \overline{A} and A^* may, and will, be identified with $\overline{A} \cap X^*$.

Each map $f: X \to Y$ extends to a map $\beta f: \beta X \to \beta Y$. If f is a surjection then $\beta f^{-}X^* = Y^*$, or, equivalently, $f^{-}Y = \beta f^{-}Y$, if and only if f is perfect (\equiv closed + compact fibers), [7, 1.5].

Also, if X is normal and A is closed in X, then $(\beta f) \upharpoonright \overline{A} = \beta(f \upharpoonright A)$.

Fact 1.1. Let $f: X \to \omega$ be a perfect surjection. Then for all

 $A \subseteq \omega$

$$(f - A)^- = [\beta f - A]^- = \beta f - A$$
.

Just observe that $(f^{\leftarrow}A)^{-} \cup (f^{\leftarrow}(\omega - A))^{-} = \beta X$, that $(f^{\leftarrow}A)^{-} \subseteq \beta f^{\leftarrow}\overline{A}$ and $f^{\leftarrow}(\omega - A)^{-} \subseteq \beta f^{\leftarrow}(\omega - A)^{-}$, and that $\beta f^{\leftarrow}\overline{A}$ and $\beta f^{\leftarrow}(\omega - A)^{-}$ are disjoint.

2. Construction of many subcontinua of Π^* . For $n \in \omega$ let C_n be the circle of radius 1/3 in the upper half plane which touches H in n, i.e.,

$$C_n = \{z \in \Pi : |z - (n + i/3)| = 1/3\}$$
.

Clearly $Y = \bigcup_n C_n$ is a closed subspace of Π , and $f = \bigcup_n C_n \times \{n\}$ is a well-defined perfect map from Y onto ω . For $p \in \omega$ define

 $C_p = eta f^{\leftarrow} \{p\}$.

[This does not conflict with our definition of C_n $(n \in \omega)$, for $f^{-}\{n\} = \beta f^{-}\{n\}$ $(n \in \omega)$ since f is perfect.] Also, for $p \in \omega^*$ define

 $X_p = C_p \cup H^*$.

We first show that C_p touches H^* in p, i.e.,

Fact 2.1. $C_p \cap H^* = \{p\}, (p \in \omega^*).$

Clearly $p \in C_p \cap H^*$ since $p = f(p) \in C_p$ and $p \in \omega^* \subseteq H^*$. Next, for $q \in \beta \omega - \{p\}$ consider $P \subseteq \omega$ such that \overline{P} contains p but not q. Then $[\beta f^- P]^- = \beta f^- \overline{P}$ by Fact 1.1, hence

$$\begin{split} C_p \cap H^* &\subseteq [\beta f^- P]^- \cap H^* = (f^- P)^- \cap \bar{H} \cap H^* \\ &= ((f^- P) \cap H)^- \cap H^* = \bar{P} \cap H^* \end{split}$$

 \square

It follows that $C_p \cap H^* \subseteq \{p\}$.

The following will be proved in $\S\S 3$ and 4.

Fact 2.2. C_p is a continuum without cut points, $(p \in \omega^*)$. Fact 2.3. H^* has no cut points.

[We know already that H^* is a continuum.] Fact 2.3 also follows from the theorem of Bellamy, [1], and Woods, [10], that H^* is an indecomposable continuum, but we think it is of interest to supply a more direct proof. COROLLARY 2.3. X_p is a continuum which has p as unique cut point, $(p \in \omega^*)$.

Fix $p \in \omega^*$. It suffices to show that p is indeed a cut point. To this end we must show that $|H^*| \neq 1 \neq |C_p|$. Now $|H^*| \neq 1$ since $H^* \supseteq \omega^*$.

It remains to show that $C_p - \overline{H} \neq \emptyset$. Define $g: \omega \to Y$ by $g = \{\langle n, n+2i/3 \rangle : n \in \omega\}$. Then $f \circ g = \mathrm{id}_{\omega}$, hence $\beta f \circ \beta g = \mathrm{id}_{\beta\omega}$, hence $\beta g(p) \in \beta g^{\leftarrow} \{p\} = C_p$. But range (g) is a closed subset of Π which misses H, hence range $(\beta g) = (range(g))^-$ misses \overline{H} , hence $\beta g(p) \in C_p - H$.

We complete this section with pointing out that each X_p is 1-dimensional (in the sense of dim, ind and Ind): Since X_p is a nondegenerate continuum we have $d(X_p) \ge 1$ for $d \in \{\dim, \operatorname{ind}, \operatorname{Ind}\}$. Since $d(X) \le \operatorname{Ind} X$ for $d \in \{\dim, \operatorname{ind}\}$ and normal X it remains to show that $\operatorname{Ind} X_p \le 1$. While there is no general sum theorem for Ind in the class of compact Hausdorff spaces we do have $\operatorname{Ind} X_p =$ $\max \{\operatorname{Ind} H^*, \operatorname{Ind} C_p\}$ since $|H^* \cap C_p| = 1$. But clearly max $\{\operatorname{Ind} H^*,$ $\operatorname{Ind} C_p\} \le 1$ since Ind is closed monotone and $\operatorname{Ind} \beta X = \operatorname{Ind} X$ for normal X.

3. Forming Y_p 's from Y_n 's. Throughout this section let Y be a space which admits a perfect map f onto ω , and for $p \in \beta \omega$ define

$$Y_p = \beta f^{\leftarrow} \{p\} \ .$$

Note that $Y_n = f^{-}\{n\} = \beta f^{-}\{n\}$, and that Y is the topological sum of the Y_n 's. Hence the Y_p $(p \in \omega^*)$ are constructed from the Y_n $(n \in \omega)$ the same way we constructed the C_p 's from the C_n 's in §2.

There are many properties \mathscr{P} such that if each Y_n $(n \in \omega)$ has \mathscr{P} then each Y_p $(p \in \omega^*)$ has \mathscr{P} . Below we see two examples of this phenomenon.

PROPOSITION 3.1. If each Y_n $(n \in \omega)$ is connected, then so is each Y_p $(p \in \omega^*)$.

Fix $p \in \omega^*$, and let F_0 and F_1 be nonempty disjoint closed subsets of Y_p . We will prove that $F_0 \cup F_1 \neq Y_p$. Since F_0 and F_1 are compact we can find open U_0 and U_1 in βY such that

$$F_i \subseteq U_i \quad (i \in 2) , \text{ and } \overline{U}_0 \cap \overline{U}_1 = \emptyset .$$

Define

$$V_i = \{n \in \omega \colon Y_n \subseteq \overline{U}_i\} \quad (i \in 2) , \qquad P = \omega - (V_0 \cup V_1) .$$

We claim that $p \in \overline{P}$: For each $i \in 2$ we have $F_{1-i} \neq \emptyset$, hence $Y_p \nsubseteq \overline{U}_i$, hence $Y_p \oiint (\beta f^- V_i)^-$; since $(\beta f^- V_i)^- = \beta f^- \overline{V}_i$, by Fact 1.1, it follows that $p \notin \overline{V}_i$.

Since each Y_n is connected we can choose $C \subseteq Y$ of the form $\{c_n : n \in P\}$ with $c_n \in Y_n - (\overline{U}_0 \cup U_1) \ (n \in P)$. Now \overline{C} meets $Y_p = \beta f^{-}\{p\}$ since βf is closed, and $P = \beta f^{-}C$, and $p \in \overline{P}$. But \overline{C} misses $\overline{U}_i = (Y \cap \overline{U}_i)^{-}$ since C is closed and misses $Y \cap \overline{U}_i$, and since Y is normal, $(i \in 2)$. It follows that $Y_p - (\overline{U}_0 \cup U_1) \neq \emptyset$, hence $F_0 \cup F_1 \neq Y_p$. \Box

REMARK 3.2. With some more work one can prove the more general result that $\beta\phi$ is monotone for each monotone perfect surjection ϕ .

This shows that each C_p is a continuum, but does not show yet that no C_p has a cut point. For that result we need the following definition and propositions.

DEFINITION 3.3. A space X is said to have Q if it has a dense subset D such that for every two distinct $x, y \in D$ there are subcontinua K and L of Y with $K \cap L = \{x, y\}$.

PROPOSITION 3.4. Each space that has Q is connected and has no cut points.

PROPOSITION 3.5. If each Y_n $(n \in \omega)$ has Q, then so has each Y_p $(p \in \omega^*)$.

Fix $p \in \omega^*$, for each $n \in \omega$ choose $D_n \subseteq Y_n$ which witnesses that Y_n has Q, and define

$$D = \{\beta d(p) \colon d \in \prod_n D_n\}.$$

[This definition makes sence since each member of $\prod_n D_n$ is a function $\omega \to Y$.] We show that D witnesses that Y_p has Q in three steps.

Step 1. We show that $D \subseteq Y_p$: For $d \in \prod_n D_n$ we have $f \circ d = \mathrm{id}_{\omega}$, hence $\beta f \circ \beta d = \mathrm{id}_{\beta\omega}$ by continuity, hence $\beta d(p) \in Y_p = (\beta f)^{-}\{p\}$.

Step 2. We show that D is dense: It suffices to prove that $D \cap \overline{U} \neq \emptyset$ for each open U in βY which intersects Y_p . Given such an U, since $\overline{U} = (Y \cap U)^-$ and since βf is continuous, we must have $p \in [\beta f^{\neg}(Y \cap U)]^- = [f^{\neg}(Y \cap U)]^-$. Choose $d \in \prod_n D_n$ such that $d(n) \in U$ for $n \in f^{\neg}(Y \cap U)$. Then $\beta d(q) \in \overline{U}$ for $q \in [f^{\neg}(Y \cap U)]^-$, in particular for q = p.

Step 3. For $x, y \in D$ we find subcontinua K, L of Y_p with $K \cap L = \{x, y\}$: Consider $d, e \in \prod_n D_n$ with $x = \beta d(p)$ and $y = \beta e(p)$. For $n \in \omega$ choose subcontinua K_n and L_n of Y_n with $K_n \cap L_n = \{d(n), e(n)\}$. Define

$$K = Y_p \cap (\bigcup_n K_n)^-$$
 and $L = Y_p \cap (\bigcup_n L_n)^-$.

K and L, which obviously are compact, are connected by an obvious generalization of Proposition 3.1, e.g., K is connected since $K = (\beta k)^{-} \{p\}$ where $k = f \upharpoonright \bigcup_{n} K_{n}$. Also, $K \cap L = A$, where

$$A = \left\{eta c(p) \colon c \in \prod \left\{ d(n), \, e(n)
ight\}
ight\}$$
 ,

so it remains to show that $A \subseteq \{\beta d(p), \beta e(p)\}$ since obviously $A \supseteq \{\beta d(p), \beta e(p)\}$. Indeed, if $c \in \prod_n \{d(n), e(n)\}$ then without loss of generality $p \in \overline{P}$ where $P = \{n \in \omega : c(n) = d(n)\}$, and then $\beta c(p) = \beta d(p)$.

4. Proving that H^* has no cut points. It sufficies to prove that if U_0 and U_1 are any two nonempty open subsets of H^* then $|H^* - (U_0 \cup U_1)| = 2^c$. Given such U_i 's, choose an open V_i in βH such that

$$\varnothing \neq H^* \cap \overline{V}_i \subseteq U_i \quad (i \in 2) .$$

Then $H \cap \overline{V}_i$ is noncompact since $\overline{V}_i = (H \cap \overline{V}_i)^-$, $(i \in 2)$. It follows that we can find $a, b: \omega \to H$ such that

Define $Y \subseteq H$ and $f: Y \rightarrow \omega$ by

$$Y = \bigcup_n [a(n), b(n)]$$
, and $f = \bigcup_n [a(n), b(n)] \times \{n\}$.

Then Y is closed in H, hence we may assume $\beta Y = \overline{Y}$, and $Y^* = \overline{Y} \cap H^*$. As f is perfect it follows that

$$eta f^{\leftarrow} \{p\} \subseteq oldsymbol{H}^* \quad ext{for} \quad p \in oldsymbol{\omega}^*$$
 .

As $f \circ a = f \circ b = \operatorname{id}_{\omega}$ we have $\{\beta a(p), \beta b(p)\} \subseteq \beta f^{-}\{p\}, (p \in \omega^*)$. But clearly $\beta a(p) \in \overline{V}_0 \subseteq U_0$ and $\beta b(p) \in \overline{V}_1 \subseteq U_1$. As $\beta f^{-}\{n\} = f^{-}\{n\} = [a(n), b(n)], (n \in \omega)$, since f is perfect, it now follows from Proposition 3.1 that $\{\beta f^{-}\{p\}: p \in \omega^*\}$ is a family of $|\omega^*| = 2^{\circ}$ pairwise disjoint subcontinua of H^* each of which meets both U_0 and U_1 . As U_0 and U_1 are disjoint and open, it follows that $|H^* - (U_0 \cup U_1)| = 2^{\circ}$, as required.

We leave generalizations to the reader.

REMARK 3.5. We can use the above to show that there is an infinite connected completely regular space which has no infinite compact subspaces; this answers a question of Bankston (oral communication). Indeed, since H^* has 2^c closed subsets, and since each infinite closed subset of H^* has cardinality 2^c, [6, 9.12], we can find disjoint X, $Y \subseteq H^*$ each of which intersects every infinite closed subset of H^* by an obvious modification of Bernstein's classical construction of totally imperfect subsets of uncountable separable completely metrizable spaces, $[8, \S 36, I]$. Then X has no infinite compact subsets, and is dense in H^* since H^* has no isolated points. So if U_0 and U_1 are nonempty disjoint open sets in X, there are disjoint open V_0 and V_1 in H^* with $X \cap V_i = U_i$, $(i \in 2)$, hence $X - (U_0 \cup U_1) = X \cap (H^* - (V_0 \cup V_1)) \neq \emptyset$ since $H^* - (V_0 \cup V_1)$ is an infinite closed subset of H^* . [Bankston now regrets the fact that he has included my example in [1] without giving proper credit (letter of Oct. 1979).]

5. Finding 2' distinct X_p 's. Frolik [3] has shown that for each space X and each $x \in X$ there is a $\tau(x, X) \subseteq \omega^*$ such that

(1) τ is topological, i.e., if $h: X \to Y$ is a homeomorphism onto, then $\tau(h(x), Y) = \tau(x, X)$ for $x \in X$,

(2) τ is monotone in X, i.e., if $x \in X \subseteq Y$ then $\tau(x, X) \subseteq \tau(x, Y)$,

(3) if D is countably infinite closed discrete subset of a completely regular space X which is C-embedded (in particular if X is normal) (so that $\overline{D} \cap X^* = D^*$) then

(a) $\tau(x, D^*) = \tau(x, X^*)$ for $x \in D^*$, and

(b) there is $B \subseteq D^*$ with $|B| = 2^{\epsilon}$ so that $\tau(x, D^*) \neq \tau(y, D^*)$ for every two distinct $x, y \in B$. [One defines τ by

 $au(x, X) = \{p \in \omega^* : \text{there is an embedding } e : eta \omega o X \text{ with } e(p) = x\}$,

but we don't need this.]

Applying this with $D = \omega$ we find $B \subseteq \omega^*$ with $|B| = 2^{\epsilon}$ such that $\tau(p, X_p) \neq \tau(q, X_q)$, hence such that X_p and X_q are nonhomeomorphic, for distinct $p, q \in B$, since

$$\tau(p, \omega^*) \subseteq \tau(p, X_p) \subseteq \tau(p, \Pi^*) = \tau(p, \omega^*)$$
 for $p \in \omega^*$.

References

1. P. Bankston, The total negation of a topological property, Illinois J. Math., 23 (1979), 241-252.

2. D.P. Bellamy, A nonmetric indecomposable continuum, Duke Math, J., 38 (1971), 15-20.

3. A. Browner, Continua in the Stone-Čech remainder of R^2 , Pacific J. Math., 90

(1980), 45-49.

4. E.K. van Douwen, Subcontinua and nonhomogeneity of $\beta \mathbf{R}^+ - \mathbf{R}^+$, Notices AMS, 24 (1977), A559.

5. Z. Frolík, Nonhomogeneity of $\beta P - P$, Comm. Math. Univ. Carol., 8 (1967), 705-709.

6. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York, 1960.

7. M. Henriksen and J. Isbell, Some properties of compactifications, Duke Math. J., 25 (1958), 83-105.

8. K. Kuratowski, Topologie, I, 4^{ième} éd., Warszawa, 1958.

9. A. R. Winslow, There are 2^{e} nonhomeomorphic continua in $\beta R^{n} - R^{n}$, Pacific J. Math., 84 (1979), 233-239.

10. R.G. Woods, Certain properties of $\beta X - X$ for σ -compact X, Thesis, 1968.

Received September 17, 1980. Research supported by NSF Grant MCS 78-09484.

Ohio University Athens, OH 45701

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024 HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90007 R. FINN and J. MILGRAM Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA	UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY	UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO	UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITI	UNIVERSITI OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: \$102.00 a year (6 Vols., 12 issues). Special rate: \$51.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.). 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

> Copyright © 1981 by Pacific Jounal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics Vol. 97, No. 2 February, 1981

Patrick Robert Ahern and N. V. Rao, A note on real orthogonal measures
Kouhei Asano and Katsuyuki Yoshikawa, On polynomial invariants of fibered
2-knots
Charles A. Asmuth and Joe Repka, Tensor products for $SL_2(\mathcal{K})$. I.
Complementary series and the special representation
Gary Francis Birkenmeier, Baer rings and quasicontinuous rings have a
MDSN
Hans-Heinrich Brungs and Günter Törner, Right chain rings and the generalized
semigroup of divisibility
Jia-Arng Chao and Svante Janson, A note on H^1 <i>q</i> -martingales
Joseph Eugene Collison, An analogue of Kolmogorov's inequality for a class of
additive arithmetic functions
Frank Rimi DeMeyer, An action of the automorphism group of a commutative
ring on its Brauer group
H. P. Dikshit and Anil Kumar, Determination of bounds similar to the Lebesgue
constants
Eric Karel van Douwen, The number of subcontinua of the remainder of the
plane
D. W. Dubois, Second note on Artin's solution of Hilbert's 17th problem. Order
spaces
Daniel Evans Flath, A comparison of the automorphic representations of GL(3)
and its twisted forms
Frederick Michael Goodman, Translation invariant closed * derivations
Richard Grassl, Polynomials in denumerable indeterminates
K. F. Lai, Orders of finite algebraic groups
George Kempf, Torsion divisors on algebraic curves
Arun Kumar and D. P. Sahu, Absolute convergence fields of some triangular
matrix methods
Elias Saab, On measurable projections in Banach spaces
Chao-Liang Shen, Automorphisms of dimension groups and the construction of
AF algebras
Barry Simon , Pointwise domination of matrices and comparison of \mathcal{J}_p norms471
Chi-Lin Yen, A minimax inequality and its applications to variational
inequalities
Stephen D. Cohen, Corrections to: "The Galois group of a polynomial with two
indeterminate coefficients"
Phillip Schultz, Correction to: "The typeset and cotypeset of a rank 2 abelian
group"
Pavel G. Todorov, Correction to: "New explicit formulas for the <i>n</i> th derivative of
composite functions"
Douglas S. Bridges, Correction to: "On the isolation of zeroes of an analytic
function"
Stanley Stephen Page, Correction to: "Regular FPF rings"