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Following Serre's original description of groups having
the fixed point property for actions on trees, Bass has intro-
duced the notion of a group of type FA'. Groups of type
FA' can not be nontrivial free products with amalgamation.
We show that a locally compact (hausdorff) topological group
with a compact set of connected components is of type FA'.
Furthermore, any locally compact group which is a nontrivial
free product with amalgamation has an open amalgamated
subgroup.

l A group G is called an amalgam if it is a free product with
amalgamation of subgroups A and B along C, i.e., G = A*B, so that
CΦ A,CΦB.

If a group G acts without inversions on a tree so that it has a
fixed vertex we say G has property FA on X. Serre has introduced
the notion of a group of type FA. We say that G is of type FA
if G has property FA whenever it acts on a tree. The following
theorem characterizes G group theoretically.

THEOREM 1 (Serre). A group G is of type FA if and only if it
satisfies the following conditions:

(1) G has no infinite cyclic quotient.
(2) G is not an amalgam.
(3) G is not the union of any sequence

Go £ Gi £ G2 - S Gn g ..

of its proper subgroups. •

This theorem was originally formulated by Serre for countable
groups [6, Theorem 15; 2, Theorem 3.2]. Bass has introduced the
notion of a group of type FA'. In order to formulate this we
introduce the ends of a tree X. Consider the collection £f of half-
lines of X: L 6 J5? is isometric to the standard half-line

0 1 2 3 4

The ends of X is the set of equivalence classes if of £f under the
equivalence relation ~ :

L ~ M iff LΓ\M is a half-line .
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Notice that if β, / e gf, e Φ f, we can choose representatives Lee,
M e / so that L U M is a doubly infinite line of X denoted (e,/).
If G acts as a group of isometries on X then it also acts on the set
^f of half-lines of X and the set if of ends of X If Le^f9 geG
we say L is neutral, repulsing or attracting for g if gL — L (i.e.,
point wise fixed), gL Ξg L, or #L £ L respectively. If L contains a
half-line L\L — V is finite) which is neutral, repulsing or attracting
for g then we say L is almost neutral, repulsing or attracting for
g. An end e e i? is neutral, repulsing or attracting for g e G if it
possesses a representative half-line which is so for g. Denote the
ends which are fixed by G(ge — e, VgeG) by ίfG.

We can now formulate the property FA'.

THEOREM 2. Suppose G acts without inversion on the tree X.
The following conditions are equivalent.

( i ) Each element of G has a fixed vertex.
(ii) Each finitely generated subgroup of G has a fixed vertex.
(iii) There is either a fixed vertex for G or a neutral fixed end.

Proof. The implication (i) => (ii) is proved by Serre [6, Corollary
3 to Proposition 26]. The implication (i)=>(iii) is proved by Tits [8,
Corollary 3.4]. The implications (ii)=>(i) and (iii)=>(i) are obvious. •

If G satisfies the equivalent conditions of Theorem 2 for a given
action without inversions on a tree X then we shall say G has
property FA' on X. This property has been further analyzed by
Bass [2, Propositions 1.6, 3.7]. In case G has property FA' on X
and has no fixed vertex then there is a half-line L with vertices
(vn), n^O, so that GVnczGVn+1, n^O, and

We say that G is of type FA' if G has property FA' whenever it
acts on a tree.

THEOREM 3 (Bass). A group G is of type FA' if and only if it
satisfies the following conditions:

(1) G has no infinite cyclic quotient.
(2 ) G is not an amalgam. •

One obtains information about homomorphisms from a group G
of type FA or FA' to amalgams using the next propositions.

PROPOSITION 1 (Serre [6, Proposition 21]). If G is a group of



LOCALLY COMPACT GROUPS ACTING ON TREES 25

type FA and φ:G—>A*B is a homomorphism to an amalgam then
φ(G) is contained in a conjugate of A or B. •

PROPOSITION 2. If G is a group of type FA' and φ\G-> A*B
is a homomorphism then φ{G) is contained in a conjugate of A or B.

Proof. First notice that a homomorphic image of type FA' is
also of type FA'. Thus φ(G) acts without inversions on the tree X
for A*B. Using condition iii) of Theorem 2, φ(G) has a fixed point
and consequently φ(G) is contained in a conjugate of A or B, or
there is a neutral fixed end for φ(G). However, the edge stabilizers
for this fixed end are trivial since A*B has no amalgamation; this
is impossible and consequently φ{G) has a fixed point. •

2* If H is a normal subgroup of type FA of a group G and
G/H is of type FA'(FA) then G is of type FA'(FA). To see this
notice that if G acts on a tree X and K is a finitely generated
subgroup of G then L — K Π H has a fixed tree XL and thus the
finitely generated subgroup KH/H ~ K/L of G/H acts on XL with a
fixed vertex which is then fixed by K. Also, if G contains a sub-
group of finite index H of type FA' then G is also of type FA'.
Indeed, if K is a finitely generated subgroup of G then L — Kf]H
is a finitely generated subgroup of H; without loss of generality we
may assume H is normal and thus the finite group K/L has a fixed
point for its action on XL.

Based on some remarks of Tits [7; §2.3] we shall show that
every extension of groups of type FA' is again of type FA'. For
this we shall need some further comments on ends. We suppose
that a group G is acting without inversions on a tree X.

PROPOSITION 3. Let eer£G. Any half-line L ee is almost neutral,
repulsing or attracting for g eG.

Proof. Given g eG and Lee. Let P be the initial vertex of
L. If gPeL then L is neutral or attracting for g. If gP$L
there are two possibilities: (1) The geodesic from P to gP meets L
only at P or (2) The geodesic from P to gP meets L at a vertex
Q Φ P. In the first case L is repulsing for g. In the second case
let U be the half-line contained in L starting at Q.

•<gP

P Q gR R
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If ReU then gR belongs to the geodesic from gP to Q for only
finitely many R. Thus there is a half-line Z / ' c I / so that gU'aU.
Choose R 6 L" so that Q belongs to the geodesic from P to R and
gQ belongs to the geodesic from gP to gR. If gQ belongs to the
geodesic from gP to Q then 1/ is repulsing or neutral for g; other-
wise, U is attracting for g. It is now easy to see that if one
half-line L e e is almost neutral, almost repulsing or almost attracting
for g then so is every half-line in e; viz. if g has a fixed point on
L in e then it must be almost neutral for g. •

PROPOSITION 4. If G has a neutral fixed end e then either ξfG =
{e} or there is a doubly infinite line of fixed points for G.

Proof. Suppose / is a repulsing or attracting end for g eG.
Let P e e so that gP = P and choose Le f on which g is repulsing
or attracting starting at Q.

Q

gQ

This is impossible since the length of the geodesic from P to Q is
different from that of gP to gQ. Thus any other fixed end / for
G must be a neutral fixed end. Choose representative Lee, Me f
so that L U M is a double infinite line.

L M

P Q

Thus for each geG there exists PeL, QeM fixed by g; hence the
doubly infinite L U M is fixed identically for all g e G. •

From the above remarks we see that every half-line in e e r£G

is one of the mutually exclusive alternatives for a given geG. We
can then define v,:G—>Z for a fixed end e as follows

ve(g) = -

0

min IL - (L Π gL) I

Lee, L attracting for g
— min I gL — (L Π # )
Lee, L repulsing for g

if e is neutral for g

if β is attracting for g

if e is repulsing for g .

THEOREM 4. For each fixed end ee?/G there is a canonical
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homomorphism

ve:G >Z

with the property that ve(g) = 0 if and only if e is neutral for g
and L9 Φ 0 for all Lee.

Proof To see that ve is a homomorphism let gu g2eG achieve
their ve value on Llf L2 respectively and let gxg2 achieve its ve value
on L. Consider the half-line g2

1Lι Π L2Π L starting at P.

Now PeL2 and thus ^ P c ^ so P has moved ve{g2) under the
action of g2. However gt{g2P) c Lx so that g2P has moved vβ(gj under
the action of gίm Thus P has moved ve(g^ + ve(g2) under the action
of 0i#2; however PeL so P moves v€{gxg^ under the action of gtg2,
so that

If ve(g) = 0 then β is neutral for # and Lg Φ 0 for some Lee .
Moreover, since # fixes identically a half-line V ah then it must
have a fixed point on every half-line in e. Conversely if g has a
fixed point on some Lee then L is almost neutral for g and e is
neutral for g; thus ve(g) = 0. •

COROLLARY 1. // /or α given action of G on a tree X a normal
subgroup H has a unique neutral fixed end e then either e is a
neutral fixed end for G or there is a nontrivial homomorphism
W.G/H-+Z.

Proof It is easy to see that e is a fixed end for G; viz. suppose

ge = / e gf, then for h e H

e - g^hge = g~ιhf.

Thus / = ge = hf and by uniqueness f = e. Thus from the theorem
above ve:G-+Z factors through a homomorphism V G/H-+Z since
e is neutral for JET. •

COROLLARY 2. // G feαs α normal subgroup H so that H and
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GjH have property FA' then G has property FA'.

Proof. Let G act on a tree X. If H has a fixed point then
there is an action of G\ΈL on XH. Since GjH has property FA' we
can find a fixed point for g e G by finding a fixed point for gH on
X^. If H has no fixed points on X then it has a neutral fixed end
and thus since G/H has no homomorphism to Z this neutral fixed
end for H is also a neutral fixed end for G. •

COROLLARY 3. Suppose that G acts without inversions on a tree
X. If G is generated by a set S with Xs Φ 0 for all se S then
either G has no fixed end or a fixed end is neutral.

Proof. If G has a fixed end e then any seS has a fixed point
lying on some half-line Lee; thus ve(s) = 0. It follows immediately
from the theorem then that ve is trivial and consequently that e is
neutral for G. •

A nonempty collection of subgroups Λ^ — {Na \ a e J^} of a
group G is called a normal filtering family if

(1) given a, β e j ^ 37 e j y so that NraNaf) Nβ and
(2) given a e Szf, g e G, iβ e JV so that Nβ c gNag~\

(These are the conditions that guarantee G is a topological group
with ^V as a fundamental system of open subgroups.)

PROPOSITION 5. Suppose that G acts without inversions on a
tree X such that C£G — 0 . // ^V* is a normal filtering family of
subgroups of G having property FA' on X then some NeΛ~ has a
fixed point.

Proof. Suppose by way of contradiction that no Ne Λ" has a
fixed point; it follows then from the FA' property that each Nae
^V has a unique neutral fixed end ea. Given Na, NβeΛ^, choose
Nr c Na Π Nβ; we have then

K} - if *« = &»r - &Nβ = {eβ} .

Thus there is a common neutral fixed end e for ,^K Given Na e Λy1
g e G, choose Nβ c gNag~u, it follows that

{e} = &*β = &<*a*-i = {ge}

and thus e is a fixed end for G. •

Since an amalgam has elements which have no fixed points on



LOCALLY COMPACT GROUPS ACTING ON TREES 29

the tree corresponding to the amalgamation it follows from Corollary
3 and Theorem 2 that there can be no fixed end for this action.
Similarly, for an HNN extension A$(C Φ A) acting on its correspond-
ing tree there can be no fixed end. To see this, we may choose
without loss of generality a representative half-line for this end
with initial vertex and edge having stabilizers A and C respectively;
then for geA it follows from Theorem 4 that g is neutral on this
half-line and thus g e C, whence C = A. We shall use these remarks
together with Proposition 5 to derive some important consequences
for topological groups. Also, this proposition will provide useful
information if the family consists of a single normal subgroup.

As a further remark on extensions of groups having property
FA' we have the following result.

THEOREM 5. If H and K are subgroups of G having property
FA' and G = HK then G has property FA'.

Proof. Let g e G be written as g = hk, h e H, k e K; express now
kh = h'k', ti eH,k'e K. Thus we have

(h-ιh')k\h-ιk~ιh) = 1 .

By results of Serre [6, Corollary 1 to Proposition 26] we can find a
common fixed point P e X of the automorphisms h~ιh', k', h~ιk~ιh for
an action of G on the tree X if each has a fixed point; this is so
from the FA' hypothesis for H and K. Consequently, we have the
properties:

hP = h'P, k'P = P, kihP) = hP .

Let X\ Xkf be the trees of fixed points of k and k'\ Xk ί l Γ V 0
since K has property FA' (condition (ii)). Since PeXk', hPeXk, it
follows that the midpoint Q of the geodesic from P to hP is fixed by
h [6, Corollary 2 to Proposition 23] and also by h' since hP = tiP\ thus
Q e Γ o r Q e X k \ If QeXk then hkQ = Q. If QeXk' then h'WQ =
Q; but hk = h(kh)h~ι = fc(fcT)*"1 so hk(Q) = hk(hQ) = h{kh)h~\hQ) -
htik'Q — hQ = Q. Hence g has a fixed point for its action on X. •

3* We now derive consequences for topological groups from the
results of the previous sections.

THEOREM 6. If G is a connected locally compact topological
group then G is of type FA'.

Proof. As a first step we decompose G as
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G = LCR

where L is a semisimple (connected) Lie subgroup, C is a compact
connected semisimple subgroup and R is the radical of G (maximal
solvable connected closed normal subgroup) and CR is a closed normal
subgroup [5, Theorem 1]. [One uses the solution of Hubert's fifth
problem to see the equivalence of connected locally compact and
Iwasawa's notion of (L) group [3].] Now using [4, Lemma 3.12] we
decompose the group L as L = HM where H is a connected solvable
Lie group and M is either the maximal compact subgroup K of L
or M = K x V where V is a vector group. It suffices then using
Theorem 5 to verify that H, M, C, R are of type FA'. Compact
groups are of type FA' [1]; also any vector group being divisible
and abelian is FA'. It remains to show that a connected solvable
group S is of type FA'. Using Iwasawa's decomposition of a locally
compact connected group as

G = HΆ HrK

where K is maximal compact and Hi = R 1 <; i <; r [4; Theorem 13],
we see that G has no nontrivial homomorphisms to Z. Now if S
is an amalgam then using Bass' result for solvable groups [2, Theorem

6.1] we obtain a surjective homomorphism S^> Z%Z2. However using
the Iwasawa decomposition above for S(=G) we obtain φ\Hi9 φ\κ are
trivial homomorphisms. To see this notice that Hi9 K are of type
FA' and hence by Proposition 2 each of the restrictions has image in
a conjugate of one of the Z2 factors; the divisibility of Hi 1 <; i ^ r, K
then forces each image to be trivial and thus also <p. •

COROLLARY 1. If G is a locally compact topological group with
G/Go compact then G is of type FA'.

Proof. This follows immediately from the theorem above,
Corollary 2 to Theorem 4 and main result of [1].

COROLLARY 2. Suppose G is a locally compact topological group.
If G is an amalgam, G — A*B, or an HNN extension, G — A*, then
GodC.

Proof. The connected component of the identity Go is of type
FA'. Using Proposition 5 and the remarks following it we see that
Go has a fixed point for its action on the tree corresponding to the
amalgam or the HNN extension if C Φ A. Since Go is normal we
see immediately that Go c C. In case the HNN extension has C — A
the corresponding tree has a fixed end, say e; using Theorem 4 now,
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each element of Go has a fixed point so Go c ker ve = A. •

COROLLARY 3. Suppose G is a locally compact topological group.
If G is an amalgam, G — A%B or an HNN extension, G = A*, then
C is open in G.

Proof. Without loss of generality we may replace G by GjG0

using Corollary 2 above and assume then that G is a locally compact
totally disconnected topological group. It is well known that G has
a neighborhood basis of the identity given by compact open sub-
groups [Hewitt and Ross, Abstract Harmonic Analysis, p. 62]. Since
compact groups are of type FA' this is a normal filtering family of
type FA'; by dint of Proposition 5 then some compact open subgroup
U has a fixed point. Without loss of generality we may assume
U c A. In case G is an amalgam choose g e B — C so that U Π g Ug"1 c
A Π gAg"1 c C; hence C is open. If G is an HNN extension it is
generated by A together with an element t (which generates the
fundamental group of X/G [6, p. 62]); thus

Un tUt'1 a Af\ tAt'1 c C .

For the HNN extension to which Proposition 5 doesn't apply, viz.
G = A\ we notice as in the proof of Corollary 2 that there is a fixed
end e and hence for any compact open subgroup U,

U c ker vecA

since U is of type FA'. Π
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