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Suppose f(x)eL1(0fπ) and let α={cU(δ={δv}) denote the
Fourier cosine (sine) coefficients of / extended to (—TΓ, π) as
an even (odd) function, that is

<xo~ \ f(%)dx y α v = 1 /(#) cos vxdx ,
π Jo 7Γ Jo

y = l , 2 , •••

2 fr

δ v = 1 f(x) sin vxcZίc .
π Jo

The sequence transformations T and T" are defined by

(Ta)o=aQ9 ( Γ α ) v = — Σ ^ (T'a)>= f (ajj), » = 1 , 2 , .

The purpose of this note is to characterize those rear-
rangement invariant function spaces Lσ(0, π) which are left
invariant by the operators T and Tf acting on Fourier coeffi-
cients of functions in these spaces. Our results include and
improve some results of Hardy, Bellman and Alshynbaeva.

G. H. Hardy [5] proved that if feLp(0, π) for some p, 1 ^ p <
oo, then Ta — {(Ta)v} is the sequence of Fourier cosine coefficients
of a function also in LP(Q, π); R. Bellman [2] proved the analo-
gous theorem for T' except that now 1 < p <; oo. Recently E.
Alshynbaeva [1] gave necessary and sufficient conditions on an Orlicz
space LMΦ in order that LMJ> may replace the Lp space in the results
of Hardy and Bellman, thus answering a question of P. L. UΓyanov.
The analogues for the sequences {bv} were also studied.

We denote by /* the nonnegative, nonincreasing function on
(0, π) which is equi-measurable with /, that is, for all λ > 0

|{ae(0, π): \f(x)\ > λ}| = |{se(0, π): f*(x) > X}\ .

We suppose throughout that σ is a function norm defined on the
measurable functions on (0, π) which is rearrangement invariant in
the sense that σ(f) = σ(f*). The associate of σ, denoted σ', is then
also rearrangement invariant and is given by

= sup : σ{g) £

= sup §y*(χ)g*(x)dx: σ(g)
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The upper and lower Boyd indices a, β of the Banach space 1/(0, π) =
{/: σ(f) < 00} are defined in [4] and satisfy 0 ^ β <; a ^ 1. For
the Lorentz spaces Lp>ff(0, π) and in particular for the Lebesgue
spaces 1/(0, π), the indices a, β are both equal to p~ι. Indices for
the Orlicz spaces are computed in [3]. It is well known that
ί/°°(0, π) Q 1/(0, π) £ 1/(0, π) for every σ and it is not difficult to
see that 1/(0, π) C 2/(0, π) Q 2/(0, π) whenever p~x < β,a < q~\

We shall state and prove our theorems only for the case of
cosine coefficients a; for the case of sine coefficients b the state-
ments of the theorems are the same with b replacing a and sine,
replacing cosine throughout while the proofs are similar.

Concerning the sequence {αj and the transformations T and Tr

we have the following theorems.

THEOREM 1. The following statements are equivalent.
(a) For every f e 1/(0, π) with Fourier cosine coefficients a —

{av}, Ta is the sequence of Fourier cosine coefficients of a function
in 1/(0, π).

(b) The lower index β of 1/(0, π) satisfies β > 0.

THEOREM 2. The following statements are equivalent.
(a) For every f e 1/(0, π) with Fourier cosine coefficients a =

{αj, T'a is the sequence of Fourier cosine coefficients of a function
in 1/(0, π).

(b) The upper index a of 1/(0, π) satisfies a < 1.

Since a = β — p"1 for the space Lp

y Theorems 1 and 2 yield the
results of Hardy and Bellman cited above. It is well known, and
in any event follows easily from the formulae for a, β in [3], that
for the Orlicz space LMΦ, the lower index β satisfies β > 0 if and
only if Φ satisfies the j 2 condition, i.e., Φ(2t) ̂  MΦ(t), t ^ to; the
upper index a satisfies a < 1 if and only if the Young's function
Ψ complementary to Φ satisfies the A2 condition. Hence Theorems
1 and 2 yield Alshynbaeva's Theorems 1 and 2 with a sharpening
of the necessity part of his Theorem 2 in that we do not have to
a s s u m e \t\ogt\ <; cΦ(t), t^tQ>0.

We shall require the following lemma relating to the operators
P and P' defined for 0 < x < π by

(Pf)(x) - cot(x/2)\*f(t)dt, (P'f)(x) - [7(t) cot (ί/2)dt .
JO J x

LEMMA 1. The following are equivalent,
(a) Pfe 1/(0, π) for every fe 1/(0, π).



TRANSFORMATION OF FOURIER COEFFICIENTS 245

(b) There is a constant c such that σ(Pf) 5̂  cσ(f), for all fe
1/(0, π).

(c) The upper index a of 1/(0, π) satisfies a < 1.
(d) The lower index βr of Lσ'(0, π) satisfies βr > 0.
(e) There is a constant c such that o'(P'f) ^ cσ'(f), for all

feLσ'(0,π).
(f) P'feL°'(0, 7i) for every feLσ'(0, π).

Proof of Lemma 1. Let (PJ)(x) = (\* f(t)dt)/x. There are
\Jo //

positive constants c, clf c2 such that for all / ^ 0

£ (PJ)(x) ^ c2((Pf)(x) 4-

and since feLσ(0,π) if and only if | / | e l / ( 0 , π) it follows that (a)
is equivalent to the corresponding statement with P replaced by
Pt; similarly P± may replace P in (b). Analogously, (Plf)(x) =
\ (f(t)/t)dt may replace P ' in statements (e) and (/). Thus, it
suffices to prove the lemma with P replaced by Pλ and Pr replaced
by P[ throughout. For this, the chain of implications (a) => (b) =>
(c) => (d) =• (e) follows in turn from Lorentz [7, p. 486], Boyd [4, p.
1253], Boyd [4, Lemma 5] and Boyd [4, p. 1253]; (e) clearly implies
(f), while if (f) holds and feLσ(0, π), geLσ\0, π) with / ^ 0, g ^ 0
then Fubini's theorem shows that

g(x)(PJ)(x)dx - [f(t)(P;g)(t)dt ^ σ(f)σ(P!g)
o Jo

< CO

so PifeL0 (see Lorentz [7, p. 4841) and (a) holds. This proves the
lemma.

LEMMA 2. If a = {αv} is the sequence of Fourier cosine coeffici-
ents of fe 1/(0, π) then c = {c,}7 cQ = 0, cu = ajv, v — 1, 2, is the
sequence of Fourier cosine coefficients of a function FeL°(0, π).

Proof of Lemma 2. Let K(t) = -log]2 sin (ί/2)|, | ί | < π . Ac-
cording to [8, p. 180], c is the sequence of Fourier cosine coefficients
of

F(x) = JL('" f(χ + t)K{t)dt, 0 < x
7Γ J - -

Now for any t, \ t \ < π we set /t(a;) = /(a? + ί) and observe that since
/ is even on (—π, π), for all λ > 0
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{a? 6(0, π): \f(x)\ > λ}| = h{xe(-π, π): \f(x)\ > X}\

so that ft{x) considered as a function on 0<#<τr satisfies (/*)*(#) ^
f*(x/2) and it then follows from (1) that σ(ft) ^ 2σ(f). Hence, if
g e Lσ'(0, π) with g ^ 0

\F(x)\g(x)dx ^ I \K(t)\dt\ \f(x + t)\g(x)dx
o J - - Jo

^ Γ |ίΓ(ί)k(/>'(flr)dί^2σ(/)^(flr)Γ \K(t)\dt

so that upon taking the supremum over g e Lσ'(0, π) with g(x) ̂  0,

σ'(g)£l it follows that σ(F) £ 2σ(f)\" \K(t)\dt <oo. Thus 2^6

Lσ(0, π) and the lemma is proved.
Since Lσ(Q, π) contains all the constant functions, we may assume

without loss of generality that ao = O in the proofs of Theorem 1 and 2.

Proof of Theorem 1. As Hardy [5] has shown, Ta is the
sequence of Fourier cosine coefficients of g(x) = (Prf(x) + F(x))/2,
where F is given by Lemma 2. Thus, if (a) holds, Lemma 2 shows
that we must have P'f e Lσ(0, π) whenever feLσ(0,π) and then
Lemma 1 shows that β > 0 so (b) holds. Conversely, if (b) holds,
Lemma 1 shows that P'/e 1/(0, TΓ) while Lemma 2 shows that Fe
Lσ(0, π) so that g e ί/σ(0, π) and (a) holds. This proves the theorem.

Proof of Theorem 2. Suppose first that (a) holds and/e 1/(0, π).

Let δ be such that Γ f*{x)dx = U \f(x)\dx, 0 < δ < π, and set
Jo Jo

ί f*(x) if 0 < x < δ

I-/*(*) if δ<x<π.

Clearly geLσ(0,π), g(x) is nonnegative, nonincreasing on (0, δ), and

\ g(x)dx = 0. Let α* = {α*} denote the Fourier cosine coefficients of

g[x). Since g e Lσ(0, π) and (a) holds, it follows that ( T ' α ^ Σ / U (^)/i
converges, and according to Loo [6, p. 273]

{T'a\ = lim—('T(l-cosiVx)(P^)(x)ώ .
Λ -̂oo 7Γ Jo

But then since (Pg)(x) is integrable on (S, π) the Riemann Lebesgue
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lemma guarantees the existence of

S δ

(1—cos Nx)(Pg)(x)dx .
0

Now, (Pg)(x) nonincreasing on (0, δ) shows

(l-cosNx)(Pg)(x)dx^\im Σ (Pg)(-=^J— \ (1-cos Nx)dx
0 .V->oo fc=l \ N / 7ζ J2ίk-l)x/N

JV'

π Jo

= -( '»(*) log
7Γ Jo

sin (d/2)
sin (t/2)

It follows that \g(t)\log+(l/t) is integrable on (0, π) and hence [6, p.
273] T V is the sequence of Fourier cosine coefficients of H(x) ~
((Pg)(x) + G(x))/2 where G is the function associated by Lemma 2
to the sequence α*. Since G e Lσ(0, π) for any σ, and H e 2/(0, TΓ)
by hypothesis, it follows that PgeLσ(0,π). Now, since \(Pf)(x)\ S
(P\g\)(x) it follows that PfeLσ(0,π) whenever feLσ(0,π) so then
Lemma 1 shows a < 1. Thus (a) implies (b).

Conversely, suppose (b) holds. There is a number p > 1 such
that a < p-1 so Lσ(0, π) cLp(0, π) and hence if feLσ(0, π) Holder's
inequality shows I | f(t) \ log+ (l/t)dt < ©o. According to Loo [6, p.

Jo

273-274] Γ'α is then the sequence of Fourier cosine coefficients of
h(x) = (P/O) + F(x))/2 where F is the function of Lemma 2. Now
Lemma 1 shows that P/eLσ(0, π) and hence heLσ(0, π) so (a) holds.
The theorem is proved.
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