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Suppose Sn is a sum of independent, identically distri-
buted random variables, which are integer-valued, with
span 1, and have finite fourth moment. If n is large, Sn

is approximately normal. An empirical histogram for k
copies of Sn will be close to the normal curve provided k >
^Ίrϊlogn. Suppose now that V~n(logn)z <k<nδ/2. The
object of this paper is to determine the asymptotic joint
distribution of the location and size of the mode of this
histogram. With overwhelming probability, the mode is
unique. Its location and size are asymptotically independent.
The location is asymptotically normal, while the size is
asymptotically double-exponential. For other k's, the be-
havior changes. Likewise, the behavior changes if the third
moment is finite but the fourth moment infinite.

l Introduction* The central limit theorem is often used to
explain the approximate normality of an empirical histogram. How-
ever, even if a random variable Sn is approximately normal because
it is a sum of n independent random variables, further theory is
required to explain the global closeness of a histogram constructed
from k independent copies of Sn to the normal density. As shown
in [4], if n and k go to infinity in such a way that k/(i/ n log n) —>
oo, then the largest deviation of the histogram from the normal
curve tends to 0. If the histogram is close to the normal curve,
then the maximum of the histogram should be close to the maximum
of the normal curve. In this paper, the object is to obtain the
joint distribution of the location and size of the maximum of such
a histogram. Under suitable conditions on n and k:

• with high probability, the maximum of the histogram is taken
on at a unique location;

• the size of the maximum is independent of the location of
the maximum;

• suitably normalized, the location of the maximum is normally
distributed and the size of the maximum has a double-exponential
distribution.

To be more specific, suppose the Xt are independent, identically
distributed, integer-valued, and have span 1

(1.1) g.c.d. {j - k: i, fc e C} = 1, where j e C iff P(X, = j) > 0 .

Suppose the fourth moment is finite:
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(1.2) E{Xί} < oo .

Let

( 1 3 ) μ = E{X1] and σ2 = Var (Xx) .

Sw = X, + -. + Xn .

Thus, (5n — nμ)lσV n is approximately normal. Take k independent
copies of Sn9 and make an empirical histogram for these k numbers.
In [4] it was shown that if k and n approach infinity in such a
way that k\λ/ n log n —» oo f the empirical histogram converges
uniformly to the normal curve. If k/'\/~n-+ °° but fc = 0(i/"wlogn),
the histogram was shown to converge pointwise but not uniformly.
Finally, if k — 0(τ/ n), the histogram does not even converge point-
wise.

This result is refined in [6], which obtains the joint distribution
of the location and size of the maximum derivation between the
empirical histogram and the probability histogram, using the growth
condition

(1.4) kjVn (log nf > oo .

This paper will borrow several results from [5] and [6].
To state the main result of this paper, let NΛ be the number

of copies of Sn which are equal to j. Up to scaling, N$ is the
empirical histogram for the k sums. Let

(1.5) p = (2τr)-1/8<7-5/4

(1.6) I = k/σV2πn

(1.7) m = nm/km

(1.8) en = m-\2 log m)-m

/ 1 1 \1/2

(1.9) wn(x) = (21og-±—2 log l o g — + x)

(1.10) Φ(y) - (2ττ)-1/2Γ e χ p ( — 1 u2)du .
J-oo \ 2 /

The main result can now be stated; the proof is deferred to the
next section.

THEOREM 1.11. Assume (1.1-10). Let k and n tend to infinity,
with k < nm. With probability approaching one, Mn = max^ Nά is
taken on at a unique index Ln. Furthermore, the chance that
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log — εjjjn - nμ)<y and (Mn - l)\V I < wn(x)

converges to

—
2p

What is the role of the regularity conditions? Assumption (1.2)
is that the fourth moment be finite. This can be relaxed somewhat,
but preliminary calculations suggest that the conclusions of 1.11
can fail if only a third moment is assumed. For a related discus-
sion, see § 4 of [6],

Assumption (1.4) governs the rate at which k and n tend to
infinity. If λ/ nlogn < k = 0[l/n (log nf\, the conclusions of (1.11)
fail: in essence, the scale wn(x) defined by (1.9) must be revised to
account for large-deviations corrections to the central limit theorem.
This can be accomplished using an expansion developed by Kolchin,
Sevastyanov and Chistyakov (1978), in Lemma 5 of their §11.6. For
more details see [2].

If k is of order V nlogn, the situation changes radically. The
maximum will not in general be assumed at a unique location, and
its distribution does not converge, but oscillates. For details, see
[2]. Related phenomena are discussed in Anderson (1970) or Iglehart
(1977). We plan to explore the case k = 0[i/ n (log n)3] elsewhere.

At the other end of the spectrum, if k is of order nm, the
location and size of the maximum are no longer asymptotically
independent; and the asymptotic distribution of the location is
discrete. If k grows faster than nm, the maximum can occur only
at one or two locations, with probabilities depending on the arith-
metic properties of μ, and on higher moments. This will be discussed
in §3.

2* The proof. The object in this section is to prove Theorem
1.11, but first, some heuristics. Let A be a large positive constant
and δ a small positive constant, to be chosen later. It is convenient
to distinguish three zones:

(2.1) the inner zone, \j — nμ\ ^ Am(21ogm)1/4

(2.2) t h e m i d z o n e , Am(2 l o g m)m <\j — nμ\<Z δσVn

(2.3) the outer zone, \j — nμ\ > δσVn .

Only the inner zone contributes to the maximum, as will be shown
later. The inner zone can be handled using [5], but some effort is
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needed to get into that framework. Clearly,

Nj-l = NJJ- kpj + kp3- - I

= VI [anjZnj + yΛi]

where I was defined in (1.6) and p3- = P{Xj = j) and

(2.5) aif = σVZπnVi

(2.6) ynj = VT{σV2jznp} - 1]

(2.7) Z,,, = (JVy - kvi)lVWi

The Edgeworth expansion shows that

(2.8) anί = 1

(2.9) yni = - \p\j - nμγ/m*

where p was defined in (1.5) and m in (1.7). To get into the frame-
work of [5], choose εn so that

(2.10) ε

this is the motivation for (1.8). Of course, εn —> 0 because m =
,̂5/8̂ 1/4 _^ ^ d u e t o t h e a s s u m p t i o n that k < nm. In [5, (1.1)], take

(2.11) /9my = 7

The center cn is ^ , so in [5, (1.3)]

(2.12) tΛi = eΛ(j - njw) .

In [5, (1.4)], put a%{t) s 1. In [5, (1.5)]

(2.13) βn{t) = 7n/3(ί)

where

(2.14) Ί\ = log m/log — > 1

and

(2.15) β(t) - - i - ^ ί 8 .

Clearly, βn and /S take their maximum at t = 0, where they vanish.
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For I, take the interval [—A, A]. Conditions [5, (1.6-23)] are easily-
verified, [5, (1.19)] being the present (1.4): note that

For any ε > 0, there is a δ > 0 such that for n large,

\j — nμ \/σV~n < δ entails (1 — ε) < σV2πnpd < 1 4- ε .

Now [5, (1.24)] establishes the conclusions of the present Theorem
1.11, once conditions [5, (1. 4-5)] are verified. That is the point of
the next lemma.

LEMMA 2.17. Uniformly over j with tn3el,
(a) α.y = l +
(b) βnj = βn(

Proof. This follows from the Edgeworth expansion. As n-*oof

uniformly in j, because there is a fourth moment and the span is 1,

(2.18) σV2πήpό = exp (-γ«iy

where

a? i = (j - nμ)lσV~n

a = μs/6σ3

μz = EKZ, - μ)"]

Hz{x) = x3 - 2>x .

For a discussion of this result, see page 205 of Petrov (1975).
The argument for claim (a) is relatively easy and is omitted.

For claim (b), recall (2.6) and (2.11). An error η in estimating
σχ/2πnpd is harmless, provided

log -A- = of I/log - 1 -
en \ εn

In other terms,

or from (1.6) and (1.8),

rj = o[k-mnι/\\og m)~m]

We claim

(2.19) 1/n = o[Λ-1/2^1/4(log m)~m} .
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Squaring and reorganizing, the assertion is that

k/nδ/2 < I/log m

or

1/m4 < I/log m ,

proving (2.19). In particular, the 0(1 fn) in (2.18) is harmless.
We claim

( 2 > 2 0 ) x
uniformly in j with ίn/ e I.

Indeed, &ni = O[^~1/2m(log m)1/4]. Taking fourth powers and reorganiz-
ing, the assertion is that

1/m4 = k/n5/2 < l/(log m)3 ,

proving (2.20). Thus, the term in Hs(x)/V^n is harmless.
Finally, we claim

xί^oikn

uniformly in j with tnj e I.

This boils down to the assertion

k > τ / ¥ ( l o g m ) 3 ,

which follows from the growth condition (1.4). So exp (—(
can be replaced by 1 — (1/2)^.

To sum up, (2.18) implies that uniformly over j with tnjel,

(2.22) σV2πnpj = 1 - (j - nμ)2/(2σ2n) + o[&"1/2^

From this, claim (b) is immediate. •

This completes the argument for the inner zone, and shows
that max,. (N, — Z)/i/Tis of order wn(x), where j is restricted to
the inner zone. We must now deal with the midzone, and show
that for any x,

(2.23)
where j is restricted to the midzone (2.2).

It will be convenient to make a more general argument, for use in
§ 3. In particular, k is allowed to be of order n5/2 or more, so m
may converge to a finite limit, or even to zero.
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LEMMA 2.24. Fix ε > 0. There is a large positive L and a
small positive δ such that: for all large n,

L <\j - nμ\<> δσ\Z~n

entails

- ε)(j - nμ)2J2σ2n < 1 - σv/2πnpj < (1 + έ)tf - nμ)2/2σ2n .

Proof. This follows from (2.18). The remainder term O(l/n)
can be merged into the ε(j — nμ)2/2σ2nf because 1/n is only a small
multiple of

U ~ nμ)2/2σ2n ,

because | j — nμ \ is large by assumption. Likewise for the term in

xlj/V n ^ δ2xjV n

because \xnj\ S δ, and xnjjV~n is a small multiple of x2

nj by previous
reasoning. Finally

/ 1 2 \ l 1 2

for \x\ ̂  <5, if δ is small enough. •

Recall ynj from (2.6), and the definition of pf I and m from
(1.5-7). With present assumptions, m may converge to 0.

COROLLARY 2.25. There is a large positive L and a small
positive δ such that: for all large n,

L <\j — nμ\ <; δσVn

entails 0 < anj < 1 and 7nj < — p\j — nμ)2/4m2.

COROLLARY 2.26. Fix x and β nonnegative. There is a large
positive L and a small positive δ such that: for all large n,

L <\j — nμ\ S δσVn

entails

P{anjZnj + ynj > -x- m-2β) g exp {-λ4/256} ,

where

λ = p\j - nμ\Jm .
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Proof. As 2.25 implies, -jnj > λ2/4. For L large, λ2/8 > x +
m~2/3. Then

anjZnj + ynj > -x - m~2/3

entails Znό > λ2/8. By [3], this last has probability at most

We must now get rid of the term (kp3)~mX2. In view of (2.16),
there is a δ so small that kp3 > (l/2)k/σi/2πn for all j with
I j — nμ I ̂  δσVn . Then

λ2 ^ (p2/m2)d2σ2n

and

{kp3)-mX2 ̂  21/2(2π)1/4σ5/2δ2 ̂  8

for small δ. Π

We can now prove a result sharper than (2.23).

LEMMA 2.27. Suppose k < nm, s o m ^ o o , Then Σy ί { ^ > ZJ-+O,
where j is restricted to the midzone (2.2), provided A is sufficiently
large and δ is sufficiently small.

Proof. Start from the identities (2.4-7). The idea is to bound

Σ

using (2.26) with x = β = 0. The bound is

(2.28) Σ exp {- p\j - ^)4/256m4} ^ 2m ί exp {-piui/256}du

where for m large,

Am = A(2 log m)1/4 - m-1 > — Λ(2 log m) 1 / 4.

To verify (2.28), let j0 be the least integer exceeding

nμ + Am(2logm)m .

The sum on the left includes all j ^ jo; the rest of the j's are
similar and will not be discussed. Due to monotonicity, the jth.
term in the sum is at most
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[ exp {-p\t -

so our half of the sum is at most

exp {-p\t - nμy

Now make the change of variables u = (ί — nμ)/m. To upper bound
the right hand side of (2.28), multiply the integrand by u3 >̂ 1 for
m large. Provided ^4A4 > 23 256, the bound tends to zero. •

Finally, we must dispose of the outer zone (2.3), and it is con-
venient to do this even if k is of order nm or bigger.

LEMMA 2.29. For any δ > 0, there is a θδ < 1 such that, con-
fining j to the outer zone (2.3),

P{max Nj < βδl} > 1 .

Proof. The basic idea is that the empirical histogram is close
to the normal curve, and hence falls off quite rapidly. To be more
precise, define xnj as in (2.18). From that result, or the local Berry
Esseen theorem, there is a C < °o such that

(2.30)
, - exp(—|-α£ y ) | < C/V n

for all j .

Fix D > σ~m(2π)-m. By [3, (5)], with probability approaching

one,

-Wj < kpj + T for all j, where
( 2 # 3 1 ) T = Dk1/2(log n)1/2/nm .

We will use (2.30) to force the right hand side of (2.31) below I,
for all j in the outer zone. Indeed, |α?ni| ^ <5, so

exp {--|*4i} ^ θ= exp {~$

and from (2.30),

kpi ^θl + σ-\2π)-mCk/n .

But k/n < I, for the latter is of order k/Vn. And T < Z in (2.31),
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because k > \/~n\ogn. •

3* When k is large* The object in this section is to indicate
how Theorem 1.11 breaks down when k is of order nm or larger.
To state the first result, let

7(t) = \p\-t2 + ct + d), where

c = μJSσ2 and d = (μ4 - 3<τ4)/4<72

X - /£)*} and /£ - E{Xλ) .

(3.1)

Let PP* be independent, with common N(0t 1) distribution, for ί=0,
± 1 , ±2, . . . .

For real a, let L^ and Mλa be the location and size
(3.2)

respectively of

max {Wt + χ-2y(i - a)} .
i

Let /(a?) and F{x) denote the integer part and fractional

part of x.

THEOREM 3.4. Assume (1.1-7), except that (1.4) is replaced by
the condition that kjnm converges to a finite positive limit 1/λ4.
Thus, m —> λ. Suppose (3.1-3). Suppose, by passing to a subsequence
if necessary, that F{nμ) —> a. With probability approaching one,
Mn = max,- Nj is taken on at a unique index Ln. Furthermore, the
joint distribution of Ln — I(nμ) and (Mn — l)/λ/ I converges weakly
to that of Lλa and Mχa.

Proof The argument will only be sketched. Fix a large,
positive number L. The ^s which count are those satisfying
3 - nμ\^L. Refer back to (2.4-7). For j = I(nμ) + i and |i |<;L,

the Znj are asymptotically distributed like the Wt. This follows
from (3.17) below.

The Edgeworth expansion (2.18) can be taken out to the term
of order 1/n, which cannot be dropped; but the remainder o(l/n) is
negligible. The conclusion: for \j — nμ\ t£ L,

(3.5) anά * 1

7Λi - λ~27(i -nμ) > 0 .

Clearly, for \j — nμ\£L,

(3.6) y(j - nμ) - y(j - I(nμ) - a) • 0 .



ON THE MODE OF AN EMPIRICAL HISTOGRAM FOR SUMS 383

Thus, the joint distribution of

(3.7) anjZnj + Ύnj: j = I{nμ) + i, \i\ £ L

converges to that of

(3.8) Wt + χ-27(i - a): \i\ ^L .

This completes the argument for j's with | j — nμ | ^ L. And
max,- {Nd — l)\V I over such j ' s has a proper limiting distribution.
What remains is to show that j's with \j — nμ\ > L do not contri-
bute to the maximum, with probability approaching one as L-*oo.
For j's with \j — nμ\ > 8σV n, Lemma 2.29 applies. For /'s with

(3.9) L< \j - nμ\ S δσ]/~ΰ,

Corollary 2.26 can be used. Let 0 < x < oo. We have to show
that

(3.10) Σ P{anjZnj + ynj > -x]
ύ

is small, where j is restricted to satisfy (3.9). Use (2.26) with β = 0,
to bound (3.10) by

(3.11) 2ί exp {-/oV/
Jz-i

This is small for L large. D

Note. Lλa is discrete; Lλa and MXa are dependent. Thus, the
behavior is qualitatively different from that described in 1.11. It
is also interesting that different subsequences can produce different
limits, due to the presence of a, the limiting fractional part of nμ.

When k increases faster than nδ/2, the situation changes again.

THEOREM 3.12. Assume (1.1-7), except that (1.4) is replaced by
the condition

and (1.2) is strengthened to £r{|X1|
5}<c>o. Suppose (3.1-3). Suppose,

by passing to a subsequence, that y(j — nμ), as a function of the
integer j, takes its maximum at the unique integer j = jn. Then,
with probability approaching one, max,- N3- is taken on at j = jn.

Proof. The argument, like that in (3.4), is only sketched. The
Edge worth expansion (2.18) must be carried out to the term in 1/n,
with a remainder 0(1/nm) which is negligible. Confine j to the
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range | j — nμ | <Ξ L. Then anj ~»1 and

Ύnj — 7(i — nμ)/m2 > 0 .

The Znj are asymptotically independent standard normals, as in 3.4.
An elementary argument shows that for \j — nμ\<LLf mB.xj{anjZnS +
Ύnj} is assumed at jn, with probability approaching one. This max
is essentially

(3.13) βjm2 + W + o(l)

where β% = y(jn — nμ) is bounded, and W is standard normal. Note
that βn may be positive, zero, or negative, and m > 0 but m —»0.

In any case, for \j — nμ\ ^ L, ma.x3>N3 is essentially

(3.14) I + λ/T{βJm2 + W+ o(l)} .

Since l/T/m2 < Z, the display (3.14) is of order lf and j's with
|y — nμ\ > δστ/n do not contribute to the maximum, by (2.29).

This leaves only the problem of eliminating j ' s with

(3.15) L < \j - nμ\ ^ δσVn .

It is enough to prove that for any positive x and β,

(3.16) Σ P{^Znj + Ίnj > -x - m-2β}
j

is small for L large, j being restricted to the midzone (3.15). This
can be argued as in (3.4). Since m-^0, the expression (3.11) tends
to zero for any L > 1. However, the bound in (2.25) is valid only
for large L, thus (3.11) can be used as a bound on (3.16) only for
large L. •

If y(j — nμ) takes its maximum at two j's, then max,,- N3- can
be assumed at either one, with probabilities computable from the
Edgeworth expansion. Likewise, if k is nm or larger, more moments
are needed, and more terms in the Edgeworth expansion.

It may be useful to give 3.17 in a bit more generality. Let
J be a finite set, and / g J. Let πnj: j eJ U {/} be positive numbers
whose sum is one. Let kn be a positive integer. Let Mnj:jeJ{J
{/} be multinomial, with parameters kn and πnj. That is, kn balls
are dropped independently into boxes labelled by J U {/}; each ball
lands in box j with probability π^ ; and Mni is the total number in
box j. Let Wnj = (Mnj - knπnj)lVfojΓnj.

PROPOSITION 3.17. Suppose πnj-+0 and knπnj~+°° for each
j 6 J. Then the joint distribution of Wnj: j eJ converges weakly to
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that of independent standard normals.

Proof. Fix constants cSf and consider S = ΣjejCdWnj. As is
easily verified, S is the sum of kn independent, identically dis-
tributed random variables, each bounded by ΣieJ I Cj \lVkjι%i -> 0:
there is one variable in the sum for each ball. An elementary
computation shows that E(S) = 0 and

Var S = Σ $ - η

where

V = 2 Σ cάGάVπn5πny ,

the last sum extending over j Φ f, both in /. But rj —» 0 because
τrΛJ —> 0. Now S is asymptotically normal, with mean 0 and variance
Σ c), for instance by the Berry-Esseen bound. Π
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