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POLYNOMIAL FORMS ON AFFINE MANIFOLDS

WILLIAM M. GOLDMAN AND MORRIS W. HIRSCH

An affine manifold is a differentiable manifold without
boundary together with 2 maximal atlas of coordinate charts
such that all coordinate changes extend to affine automor-
phisms of R". These distinguished charts are called affine
coordinate systems.

Throughout this paper M denotes a connected affine
manifold of dimension n=1. We write £ for R".

A tensor (field) on M is called polynomial if in all
affine coordinate systems its coeflicients are polynomial func-
tions in n variables. In particular a real-valued function
on M may be polynomial.

It is unknown whether there exists any compact affine
manifold admitting a nonconstant polynomial function. The
main purpose of this paper is to prove that for certain
classes of affine manifolds there is no such function. These
results are then applied to demonstrate that certain poly-
nomial forms must also vanish. For related results, see
Fried, Goldman, and Hirsch [2], Fried [1], [6], and [5].

1. Development, holonomy, and polynomial tensors. Let
p: MM — M be a universal covering space. There is an immersion
D: M — E, called the developing map, with the following properties
(see e.g., [2]):

(1) D is affine, i.e., in affine coordinates D appears as an
affine map;

(2) D is unique up to composition with an affine automorphism
of K.

We call D) the developing image.

Let 7z denote the group of deck transformations of 7. It
follows from (2) that there is a homomorphism a: 7z — Aff (&), the
group of affine automorphisms of E, such that D is equivariant
respecting «, that is:

Dog =a(g)eD for all gex.
We call a the affine holonomy. The composition

N T~ AR (B)

> GL(E) ,

where 3 is the natural homomorphism, is called the linear holonomy.

If a(n) fixes a point pe E then M is called a radiant manifold.
In this case we can compose D with translation by —p to obtain
a new developing map whose corresponding affine holonomy fixes
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the origin. When M is radiant we always assume D is such that
a(rm) fixes the origin. Then the affine and linear holonomy coinecide.

The simplest example of a radiant manifold is a Hopf manifold.
Here M is the quotient of R" — {0} by the ecyclic group generated
by a linear expansion (a linear map all of whose eigenvalues have
norm greater than one). One obtains more radiant manifolds by
taking products of Hopf manifolds.

If D: M — E is a homeomorphism then M is said to be complete.
In this case M is the orbit space E/a(x).

LeMMA 1. Suppose that M admits an affine immersion f: M—E.
Then each polynomial tensor T on M is f-related to a unique poly-
nomial temsor S on E.

Proof. Let f map a nonempty open set U M diffeomorphically
onto an open set VC E. There is a unique tensor S, on V which
is f-related to T|,. Since f is affine, S, is polynomial; hence S,
extends to a unique polynomial tensor S on E. The pullback f*S
is a polynomial tensor on M which agrees with 7T in U; hence it
equals T because M is connected. The uniqueness of S is obvious. []

Now let T be a polynomial tensor on M and let T = p*T be
the pullback of T by p: M — M. Then T is a polynomial tensor on
M, where I is given the affine structure induced from M by .
Since the developing map D: if — E is an affine immersion, Lemma
1 implies that T is D-related to a unique polynomial tensor S on E.
The equivariance of D and the fact that 7' is w-invariant shows that
S is a(w)-invariant.

Conversely, starting with an a(z)-invariant polynomial tensor S
on E, there is a unique polynomial tensor T on M such that p*T is
D-related to S.

We have established a natural one-to-one correspondence between
polynomial temsors on M and a(w)-invariant polynomial tensors on K.

2. Polynomial functions. Let D: Il — E be the developing
map of the affine manifold M. Let I' = a(x) C Aff () be the affine

holonomy group of M.
Let f: M — R be a polynomial function. In §1 we showed that

there is a unique polynomial map g¢: £ — R such that the following
diagram commutes:
-2 E
pl 19
f

M— R
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and g is [-invariant.

Suppose f is bounded on M. Then clearly g is bounded on the
developing image D). It follows that if LCE is a line such
that LN D(M) is unbounded, then gl|, is comstant. This implies
that ¢, and hence also f, is constant if M is compact and complete.
More generally:

THEOREM 2.1. If D(M) contains a mnonempty open cone them
every bounded polynomial function on M is constant.

Proof. Let Cc D(IM) be the open cone, with vertex ge E. For
every xcC the line xq meets C, and hence D(J), in a half line.
Therefore ¢ is constant on xzq. Since C is open, the set of vertices
9’ of open cones C’ contained in C is open. It follows that g is
constant on a nonempty open set. Thus g, and also f, is constant. []

THEOREM 2.2. Let D(M)> H(C) where CCE is a monempty
open cone and H:E — E is a polynomial map whose Jacobian is
not identically zero. Then every bounded polynomial function on
M is constant.

Proof. As in the proof of 2.1, one sees that goH:C— K is
constant. It follows that goH is constant. Since H has nonzero
Jacobian at some point, the inverse function theorem implies that
g is constant on an open set. Hence g and f are constant. 1

In Goldman [4] there is an example of a nonradiant compact
affine 3-manifold with solvable fundamental group whose developing
image is the convex set {(z, ¥, 2) € R*: y > 2?}. This set contains no
open cone, but is equivalent to an open half-space by a polynomial
automorphism of R®.

THEOREM 2.3. Ewery polynomial function on a compact radiant
manifold M is constant.

Proof. We may assume the affine holonomy group I” is contained
in GL(E). Therefore it preserves the vector field on E defined by
the identity map I(x) = x, for x e E. We consider I as a ['-invariant
tensor; therefore I corresponds to a polynomial vector field B on M
called the radiant vector field.

Let {.};cx be the flow of R. Let B = p*R be the radiant vector
field of M. Let &, be the flow of . Then D: M — E is equivariant
respecting &, and the flow of I, which is & — e'x. Therefore D(II)
is invariant under multiplication by positive scalars, and hence an
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open cone. Thus 2.2 implies 2.3. O

Let A(I') C Aff (E) be the smallest algebraic subgroup of Aff (E)
containing I'. We think of A(I") as acting on E by affine automor-
phisms.

THEOREM 2.4. Suppose that A") has an open orbit in E. Then
every polymomial function on M is constant.

Proof. Obvious, sinee I'-invariant implies A(l")-invariant.

A condition generalizing radiance is decomposability: We say
that I < Aff () preserves a decomposition of E if there is a direct-
sum decomposition E = E, P F, where E, is I'-invariant and F is
B(")-invariant, where g: Aff (F) — GL(E) is the natural homomor-
phism. If M has decomposable holonomy, then the radiant vector
field on F' defines a C> vector field R, as in §6 of [2]. The sets
D™a x F), acH, are leaves of a foliation Z of II. Being =-
invariant, & comes from a foliation % of M. Each leaf L of
&, in its manifold topology, has a natural affine structure, which
is radiant, having R, as its radiant vector field.

THEOREM 2.5. If M 1is compact, has decomposable holonomy as
above, and dim E, =1, then every polynomial function on M is
constant.

Proof. Since M is compact, the F-radiant vector field R, on M
is integrable; it then follows from 2.1 that on each leaf of & every
polynomial function f: M — R is constant. Then the corresponding
polynomial g: E, @ F — R is constant on the cosets of F' and g factors
through a polynomial & as

BEQF—E-">R,

that is, g(z, ¥) = h(x).

Since g is I'-invariant, k& is invariant under the affine action of
I’ on E,. Passing to a double covering of M we may assume that
I' preserves orientation on E,. Now E, = R, so every ve€I which
acts nontrivially on K, has infinite orbit. But a polynomial invariant
under such a 7 is constant. Hence either g|; is constant, forcing
g and f to be constant, or else I' acts trivially on E,. But then I"
fixes the origin of E, so M is radiant and the theorem follows
from 2.3.

One important case of decomposable holonomy occurs when M
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is compact and I" is a nilpotent group. Then the holonomy of M
decomposes E = E, P F, in such a way that under the projection
E — E, the developing image D) is a fibration onto E (see [2],
6.8). It then follows (see also [1}]):

THEOREM 2.6. A compact affine manifold whose affine holonomy
group contains a nilpotent subgroup of finite indexr cannot admit a
nonconstant polynomial function.

Another proof of 2.6 follows from the fact that if M is a com-
pact affine manifold with nilpotent affine holonomy group I', then
either E, = E and M is complete or else every ['-invariant algebraic
subset of E contains Z, [6]. Since the level sets of an invariant
polynomial g: E — R are I'-invariant and disjoint, this contradiction
proves 2.6.

In a forthcoming paper [1], D. Fried proves that on all compact
affine manifolds of dimension three there are no nonconstant poly-
nomial funections.

In [6] we prove that on all compact affine manifolds with
“parallel volume,” i.e., the affine structure is volume-preserving, there
are no nonconstant polynomial functions.

3. Polynomial symmetric and exterior forms. A polynomial
tensor T on an affine manifold has a well-defined degree. If the
degree is 0 we call the tensor parallel. There is then a constant
tensor S on K such that in every affine chart the components of T
appear as S.

A parallel symmetric k-form on M corresponds to a I'-invariant
symmetric k-linear map £ X --- X E— R.

THEOREM 3.1. On a compact radiant manifold every parallel
symmetric k-form (k= 1) is zero.

Proof. Let T be the symmetric k-form and R the radiant
vector field. Define a function f: M — R by f(x)=T(R(x), - -+, R(x)).
Then f is a polynomial function; by 2.3 f is constant.

Let S: E*— R be the symmetric k-linear map corresponding to
T. The radiant vector field corresponds to the identity vector field.
Consider the map ¢: E — R, g(x) = S(x, -+, 2). Since g is a poly-
nomial function on E which corresponds to f, we see that g is
constant. But the kth derivative of g at 0, considered as a sym-
metric k-linear map, equals k! S. Hence S = 0. M
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THEOREM 3.2. On a compact radiant manifold every polynomial
closed 1-form 1is zero.

Proof. Let w be such a 1-form and let R be the radiant vector
field. Then w(R) is a polynomial function, hence constant by 2.3.

The corresponding closed 1-form @' on E is exact; thus o =du
where u: F — R is a polynomial function. Now ' = Y(0u/ox;)dx;; so
the constancy of @'(R’) means that Xx,(0u/ox,) is constant. Since it
vanishes at 0, it must vanish identically.

This says the derivative of % along any ray through the origin
vanishes identically. Thus « is constant along such rays; so w(x) =
#(0) for all x. This shows @ = du = 0; hence w = 0. []

Theorem 3.2 cannot be extended to polynomial 1-forms which
are not closed, nor does it extend to nonradiant compact affine
manifolds. In [2], §6 there is an example of a.compact radiant
3-manifold M which admits a parallel exterior 2-form w. There are
linear coordinates in R® so that R = x(8/0x) + 9(9/0y) + 2(8/0z) is
the radiant vector field and w=dxAdy. The interior product crw=
2dy — ydx is a nonzero polynomial 1-form on M.

In general for an affine manifold M we may consider the poly-
nomial de Rham complex A%, (M) consisting of all polynomial exterior
differential forms on M, and form its cohomology Hpx, (M), the
polynomial de Rham cohomology of M. There is a map HJ, (M) —
H*(M; R) induced by the inclusion A%, (M) — A*(M) of chain com-
plexes.

Congecture 3.3. If M is a complete affine manifold, then the
natural mapping H3% (M) — H*(M; R) is an isomorphism.

In [2], §8 this conjecture is proved when M is compact and
(M) is nilpotent. In [3] this is extended to M compact and =, (M)
virtually solvable.

In contrast to the complete case, we have the following result:

THEOREM 3.4. Let M be a radiant affine manifold. Then for
k>0, H: (M) = 0, i.e., every closed polynomial k-form is exact.

Proof. Let @ be a polynomial exterior k-form on M. Let o'
denote the corresponding form on E. Decompose ' into its com-
ponents @ = w,, + -+ + w; + @, where ®, is an exterior k-form
whose coefficients are homogeneous polynomials of degree p. Since
M is radiant each w; defines a k-form w, invariantly on M. It is
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easy to see that w is closed if and only if each w, is closed. Hence
to prove the theorem it suffices to assume that the coefficients of
w are homogeneous polynomials are some degree m.

Let R’ (resp. R) denote the radiant vector field on E (resp. M)
and let & (resp. &) be the corresponding flow. It is easy to see
that gfw=e"*"™"% so we may take the Lie derivative “Fw=(k+m)w.
Now @ = (k + m) Frw = d({(k + m) zw) is exact. 1

In a special case, there is a converseto 3.4:

THEOREM 3.5. Let M be a compact affine manifold whose holo-
nomy group is wnilpotent. If HE (M) =0 for all k>0, then M is
radiant.

Proof. It is proved in [7] (see [6] for another application) that
unless M is radiant there is a parallel exterior k-form ® with non-
zero cohomology class [w] e H*(M). Since w is parallel, it defines a
cohomology class {w}e HE,,(M). Since the image of {w} in H*(M)
is nonzero, {®} defines a nonzero element of HE, (M). 7
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