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A fixed point theorem is proved for nonexpansive map-
pings in Banach spaces which are isomorphic to spaces with
certain boundedly complete bases.

1* Introduction* Suppose X and Y are isomorphic Banach spaces
with h\\ -\\γ <> || | | x ̂  &|| ||F, where || ||F and || | | x denote the norms in
Y and X respectively. Let t = kh~x (this notation will be kept fixed
throughout the paper). Suppose also that every convex weakly com-
pact (weak* compact, when X is a dual Banach space) subset K of
X has the fixed point property with respect to nonexpansive map-
pings (i.e., mappings T: K-+K such that || Tx — Ty | | x <; || x — y | | x, for
all x, yeK). It is not known in general whether, assuming t suf-
ficiently close to 1, convex weakly compact (weak* compact) subsets
of Y have the same property (but see Bynum [1]).

In this paper we answer in the affirmative this question when
X has a Schauder basis (δJ which satisfies a condition introduced by
Gossez and Lami Dozo [2]. For every positive integer k and xeX
set Uk(x) = ΣS=Jn(#n> where (fn) denotes the associated system of
linear f unctionals. We shall always assume that there exists a strictly
increasing sequence (kn) with the following property:

for every c > 0 there is p > 0 such that whenever x e X
and n satisfy

\\x-Ukn(x)\\z^c

then | | a ? | | x ^ l + <0.
It is easy to see (Lemma 1 below) that the above condition im-

plies that the basis (bn) is boundedly complete, so that X is a dual
Banach space.

In the next sections it is proved that there exists t0 > 1 such
that for t < t0 every weak* compact convex subset of Y has the fixed
point property with respect to nonexpansive mappings. For t = 1
this follows easily from the results of Karlovitz [3], while for t > 1
it can not be deduced from [3]. As a remarkable consequence we
obtain that, in every Banach space Y isomorphic to I1 with t < 2,
weak* compact convex subsets have the fixed point property with
respect to nonexpansive mappings.
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2* Properties of the space X*

LEMMA 1. Suppose X is a Banach space with a Schauder basis
(jbn) satisfying the assumptions of the above section. Then the basis
(δj is boundedly complete and X is isomorphic to the dual of the
Banach space generated by the system of the linear functionals (fn).

Proof. Suppose that (αj is a sequence of scalars such that
sup y i|Σ»=ittn&Jlx < °° Then, the same argument as in [6, p. 290-
291] implies that, for some subsequence knj, Σ*l{ anbn converges to
a point xeX. Then, of course, fn(x) = an for every n, so that
Σ~=i &J>n = χ τ l i e second assertion is proved in [6, Th. II 6.2, 3)].

For every positive integer n and every real c > 0 we set rn(c) =
inf \\x\\χ — 1, where the infimum is taken over all xeX such that
II Ukn(x) |U = 1, II x - Uφ) \\z ̂  e. We set also r{c) = infn rn(c). Clearly
r{c) > 0 for all positive c. We complete the definition of r(c) by
letting r(0) = 0. In the following we set Vkn(x) = x — Ukn(x).

LEMMA 2. r(c) is α nondecreasing continuous function of c.

Proof. Let ε > 0 be arbitrarily small and c2> c^Q. There
exist n>0 and xeX such that || #*,(») ||χ = 1, || Vkn(x) \\x ̂  c2 and
1 + r(c2) + e > \\x\\x ̂  1 + rfo). Hence r ^ ) ' ^ r(d) ^ 0 = r(0) and
r(c) is nondecreasing.

Observe now that there exist a sequence of points Xj e X and a
sequence of positive integers % such that

II Ukn{xj) llx = 1 , II F ^ ) |U ^ d and 1 + r(cx) + i" 1 > || a, | | x .

We set Vj = || F^Xα^Hx. After extracting a subsequence if necessary,
we may suppose that v = lim^ ̂  exists. If v > c2, then, for large
values of j , 1 + r(cλ) + i" 1 > | | ^ | | x ^ 1 + r(c2), so that, by what has
been already proved, rfo) = r(c2), and we are done. Thus we may
assume c^v^ c2. Let yά = x$ + ŝ  F ^ (xά), where sd is a scalar such
that (1 + Sj)vj = c2. Clearly we must have || #/||χ 2£ 1 + r(c2) and
11% - l/ilU = I^Ί^ Hence

l + rfe) + r 1 > ιι%

that is,

r(c2) - r ( d ) ^

Now, if v < c2, then \sd\ = ss = (e2 — v^vj1 ^ (c2 — cjvj1 for j large
enough. If v = c2 then βy tends to 0, so that, if j is large, |βy| <
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(Ci — cjvj1. In any case, for large values of j , we obtain r(c2) —
r(Cj) ^ (c2 — cλ) + j - \ and the proof is ended.

LEMMA 3. Suppose that (xn) Q X is a sequence of points
converging in the weak* topology to a point zeX. Let 7 =
lim supn || xn — z | | x. Then, for every y eX, y Φ z

limsup ||α?m - y\\x ^ {1 + r(7||» - Λ\~χ))\\v - A\χ

Proof. Let ε > 0 be arbitrarily small. There exists j = j(ε)
such that || Vkj(y — z) | | x < ε. Since α?n — z converges weak* to 0 and
the associated functionals fn are weak* continuous (Lemma 1), for
every fixed j we can find n0 such that || Ukj(xn — z) \\x < ε for n
greater than n0. Therefore, for n > n0, we have by Lemma 2

- z) + F fci(^ - α?,) | | x

^ ~2e + || Ukj(y - z) ||X{1 + r( | | T^/z - »0 ||χ || Uφ - z) \\Ϋ)}

^ - 2 s + (||» - ^lU - e){l + r((| |« - α?n | |x - ε){\\y - «| | x + β)"1)}.

By Lemma 2 again

limsup | |y - a?n | |x

^ (ll» - «llx - e)ίl + r((Ύ - e)(||y - s | | x + e)"1)} - 2s .

Since ε is arbitrary and r is continuous, the lemma follows.

3* Main results* The following lemma is a variant of a result
of [5].

LEMMA 4. Suppose Y is a dual Banach space, K ζZY is a con-
vex weak* compact subset, T:K~*K is a nonexpansive mapping.
Then, for every xeK there is a closed convex "subset H(x) £ K which
is invariant under T and satisfies

(a) diam H(x) ^ supn || x - Tnx \\γ

(b) sup^iKs) II x - y \\γ ̂  2 supπ || x - Tnx \\γ.

Proof. For xeK, set d(x) = supM | |x — Tnx\\γ and denote by O(x)
the orbit of x (i.e., 0(x) = {a?, Γα:, Γ2α;, , T % •••}). Set also

Ao = cl* co O(α) An+1 = cl* co T(An) , n = 0,1, 2,

where cl* co denotes the weak* closure of the convex hull. Clearly
An £ K, O(Tn+1x) £ T(An) £ An+1, diam An ^ d(a?). Since J5Γ is weak*
compact, Bk = f\n>k An is nonvoid for every k = 0,1, 2, . More-
over J?fc is closed and convex, diam Bk <; d(#), J5& £ Bk+1, T(Bk) £ Bfc+1.
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It follows that H(x) = \Jt=*Bk satisfies (a). Property (b) follows from
the fact that H(x) contains the set Π«=oCl* O(Tnx). It is also clear
that H(x) is invariant.

The following theorem is our main result announced in § 1.

THEOREM. Suppose X is a Banach space with a Schauder basis
satisfying the assumptions of § 1. Let Y denote an isomorphic
Banach space with t < 1 + r(l). Then, every convex weak* compact
subset K of Y has the fixed point property with respect to nonexpan-
sive mappings.

Proof. Suppose T: K-+K is a nonexpansive mapping. There is
a sequence (x°n) £ K such that limn \\x°n — Tx°n\\γ — 0. After passing
to a subsequence if necessary, we may assume that x°n is weak* con-
vergent to a point z°eK, and that aQ = limn \\x°n — z°\\γ exists. By
nonexpansiveness, for every positive integer & we have \\z° — Tkz°\\γ^
limsup, || x°n - Tkz°\\γ ̂  α0. Thus d(z°) ̂  a0. By Lemma 4 there is
a closed convex invariant subset H(z°) £ K such that diam H(zΌ) ̂  aQ.
Then there exists a sequence (xi) contained in H(z°) such that
||α?i — ΪVJIr tends to 0, x\ converges weak* to z1 eK, ax = limn \\x\ —
z1^ exists and also 71 = limn ||a?i — zl\\z exists. We then have (recall
the notation introduced in § 1) for every m

a0 ^ lim sup || xι

m - xι

n \\γ ^ k~ι lim sup || xx

m — x\ \\x

by Lemma 3. Letting m tend to infinity we get

aQ ^ lim sup (lim sup || xι

m — x\ ||r)
m Λ

^ ί - ^ ί l + r(l))

that is,
a, ^ ί(l + r α ) ) - 1 ^

Moreover, since z1 belongs to the weak* closure H(z°)f Lemma 4, (b)
implies ||z° - zι\\γ ^ 2α0.

Carrying on this process we produce a sequence of nonnegative
numbers an such that an+1 ^ ί(l + ril))'1^ ^ {t(l + rQ.))'1}"^^, and
a sequence of points z71 e K such that || zn+1 — ^n | | r ^ 2an, \\ zn — Γ^n ||F<*
an. Hence zn is strongly convergent to a fixed point of T.

If X = lp, it is easy to see that 1 + r(l) == 21/p. Therefore we
have the following remarkable corollary.
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COROLLARY. Suppose Y is isomorphic to I1 with t < 2. Then
every weak* compact convex subset of Y has the fixed point property
with respect to nonexpansive mappings.

This corollary generalizes a result of Karlovitz ([3, Corollary]).
In [4] an example was given of a space isomorphic to I1 with t = 2,
whose unit ball has not the fixed property with respect to non-
expansive mappings. Hence our corollary is the best result possible.

4* Concluding remarks and comparison with previous results*
If X is reflexive, then the above theorem can be proved in a much
simpler way. This case however is not new, because it is easily
seen that, under our assumption on Y, every convex weakly compact
subset of Y has normal structure. If X is not reflexive, we were
not able to decide whether every weak* compact convex subset of
Y has normal structure (of course when t < 1 + r(l)). Recall that
a weak* closed convex subset C Q Y has normal structure if every
weak* compact convex subset K ζZC (containing more than one point)
has a nondiametral point (see ([4])). A sufficient condition for C to
admit normal structure was also given in [4]. The condition is as
follows.

Suppose there exists a functions δ: (R+f—>R+ such that
( i ) for each fixed s, δ(r, s) is continuous and strictly increasing
(ii) δ(s, s) > s for all s
(iii) if xn tends to 0 weak* and | | # n | | F tends to s, then, for all

yeK, \\y - xn\\γ t e n d s t o δ(\\y\\γ,s).
It is easy to see that this condition is not satisfied in the space

Y obtained by renorming ϊ1 with the norm \\y\\Y = max (H2/H100,
t^lll/llii), where 1 < t < 2. Indeed, if (&n) is the natural basis of
I1, take y = b±. Assume that the condition of [4] is satisfied, say,
for the unit ball of Y. We have || y \\γ = 1. Set xn = (ί - l)bn. Then
\\xn\\γ = t - 1, \\y-xn\\τ = 1, so that, by (iii), δ(l, (ί - 1)) = 1. On
the other hand, if we choose z = bλ + (t — 1)&2, we have \\z\\τ — 1
and | |s — ccn||F = t~λ\\z — xn\\ιi = t~\2t — 1). Hence, by (iii) we should
have 8(1, t — 1) = 2 — t"1, a contradiction.

Analogous arguments show also that the relation j . is not ap-
proximately uniformly symmetric in Y (in the sense of [3]) and our
result cannot be deduced from [3].

For other examples concerning spaces X satisfying our assmup-
tions, we refer to [2] and [6].
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