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The notion of point of local nonconvexity has been an
important tool in the study of the geometry of nonconvex
sets, since Tietze characterized, more than fifty years ago,
the convex subsets of En as those connected sets without
points of local nonconvexity. It is proved here that for
each convex component K of a closed connected set S in a
locally convex space there exist points of local nonconvexity
of S arbitrarily close to K, unless S itself be convex. Klee's
generalization of the just quoted Tietze's theorem follows
immediately. The notion of "higher visibility" is introduced
in the last section, and three Erasnosselsky-type theorems
involving the points of local nonconvexity are proved.

1* Notations and basic definitions* The interior, closure,
boundary and convex hull of a set S are denoted by int S, clS,
bdry S and conv S, respectively. The closed segment joining x and
y is denoted [xy]. If xeS and yeS, we say that x sees y via S if
[xy] c S. The star of x with respect to S is the set st(x; S) of all
points of S that see x via S. A star-center of S is a point xeS
such that st(x; S) = S, that is a point of S that sees the whole S.
The kernel of S is the set ker S of all the star-centers of S. S is
star shaped if ker S Φ 0 . A convex component of S is a maximal
convex subset of S. The point x e bdry S is a point of local non-
convexity of S if for every neighborhood U of x, the set U' = U Π S
is not convex. The set of all points of local nonconvexity of S is
denoted Inc S. The origin (null-vector) of a linear topological space
is denoted by θ, and the family of its neighborhoods by

2. Points of local nonconvexity and convex components*

THEOREM 2.1. Let S be a closed connected nonconvex set in a
locally convex linear topological space, and K be a convex component
of S. Then (K + V) Γϊ Inc S Φ 0 for each

Proof. It is clear that K is closed and, a fortiori, closed in the
relative topology of S. Assume there exists a VetyK(θ) such that
(JΓ + IOnlncS = 0 . If xeK there must exist a UetyΓ{θ) such
that Uc V and Ur = (U + x) f] S be convex. We intend to prove
that UrcK. On the contrary, suppose there exist y e U' and zeK
such that y does not see z via S. Let yQ be the last point of [xz]
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(going from x to z) that is visible from y. By Lemma 1 of [7], it
is easy to verify that [yyQ] ΓibdryS would contain a point pe lncS.
But then peK + UczK + V, in contradiction with our basic assump-
tion. Hence there are no such points y and z. That is Vy e U'
and VzeK, [yz]aS. This implies that conv( U' U K) c S, and by
the maximality of K, conv(£ΓUϋO = K and WaK. Since this is
true for every x e K, K is open in the relative topology of S. The
connectedness of S implies that K — S, a fact that contradicts the
nonconvexity of S. Hence no such V can exist.

We are tempted to substitute the thesis of 2.1 by the stronger
statement "K Π lnc S Φ 0 " . Unfortunately this is false, as the
following counterexample shows. If we define S= {(x; y) e R2 \ y^ \ x I"1}
then K = {(x; y) \ y <; 0} is a convex component of S but K Π lnc S =
0 . The next corollary considers a situation where this stronger
statement holds.

COROLLARY 2.2. Let S be a closed connected set in a locally
convex linear topological space such that incS be compact or empty,
and let K be a convex component of S. Then the following statements
are equivalent: (i) K = S (ii) K Π lnc S — 0 .

Proof. Clearly (i) implies (ii). On the other hand, assume that
K Π lnc S = 0 . We intend to prove the existence of a neighborhood
Vo of θ such that (K + Vo) Π lnc S = 0 . The inexistence of a neigh-
borhood would allow us to pick a net {tv, Ve^V(θ)} in IncS such
that for every Ve^Kiθ) tve{K + V) Π IncS. The compactness of
lnc S would imply the existence of a converging subnet, which in
turn would contradict (ii). Hence the existence of Vo is proved, in
contradiction with the thesis of the previous theorem. Then S must
be convex and (i) holds.

We conclude this section with a new proof for the classical
Tietze-Klee theorem, originally stated in [3].

THEOREM 2.3 (Tietze-Klee). Let S be a closed connected set in a
locally convex linear topological space. Then the following statements
are equivalent: (i) IncS = 0 . (ii) S is convex.

Proof. It is clear that (ii) implies (i). On the other hand, (i)
contradicts the conclusion of Theorem 2.1. Hence S must be convex.

3* Three Krasnosselsky-type theorems* The point p has higher
visibility via S than the point q if st(p; S) z> st(g; S). The relation
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"has higher visibility via S than" is a partial ordering in S, and
the star-centers of S (if there exist such points) should be the
maximal elements for this ordering. The visibility cell of p is the
set vis(p) of all the points of S having higher visibility viaS than
p. Of course, pevis(p) always.

LEMMA 3.1. The visibility cell of p is the intersection of all the
convex components of S that include p.

Proof. Let x e vis(p) and K be a convex component of S that
includes p. Then Kc st(p; S)ast(x; S). This inclusion implies that
K' — conv ({x} U K) c S, and the maximality of K yields K = K'.
Hence x e K. Conversely, let x belong to the intersection of all the
convex components of S that include p, and let zest(p; S). There
is a convex component Ko of S such that [zp] c Ko. But x e Ko by
construction. Hence x sees z via S. Since the argument holds for
each z e st(p; S), x e vis(p).

It is important to observe that the preceding characterization
of vis(p) uses no topological structure whatsoever.

THEOREM 3.2. Let S be a closed connected nonconvex set in a
locally convex linear topological space, such that lnc S be compact.
The kernel of S is the intersection of the visibility cells of all its
points of local nonconvexity.

Proof. Let A — Π {vis(p)) p e lnc S}. Corollary 2.2 and Lemma
3.1 imply that A is the intersection of all the convex components
of S. Whence, by the lemma that precedes Theorem 2 of [6], A =
kerS.

Three well-known theorems concerning intersections of families
of convex sets are quoted here for later reference.

THEOREM 3.3 (Helly [2]). Let 3ίΓ be a collection of compact convex
sets in En, containing at least n + 1 members, and such that each
subfamily ofn + 1 members have nonempty intersection. Then, the
intersection of all the members of S?~ is not empty.

THEOREM 3.4 (Klee [4]). Let _%" be a collection of compact a
convex sets in En, containing at least n + 1 members, and let C be
compact convex set in En such that for each subfamily ofn + 1
members of 3ίΓ there exists a translate of C included in the inter-
section of the subfamily. Then, there exists a translate ofC included
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in the intersection of all the collection Jsf.

THEOREM 3.5 (Grunbaum [1]). Let n and k be integers such that
n^k> 0, and let h(n; k) be defined by: (i) h(n; n) = n + 1 (ii)
h(n; 1) = 2n (iii) h(n; k) = 2n — k for n > k > 1. Lei *^~ be a finite
collection of convex sets in En containing at least h{n; k) members,
and such that each subfamily of h(h; k) members has intersection of
dimension at least k. Then the intersection of all the collection 3Z~
is of dimension at least k.

THEOREM 3.6. Let S be a compact connected nonconvex set in En

such that for every k~pointed subset {t^ tk} of lnc S, with k ^
n + 1 there exists a point having higher visibility via S than each
tf. Then S is star shaped.

Proof Consider the family 5ίΓ = {vis(p) | p e lnc S}. By Lemma
3.1 each member is convex and compact, and by hypothesis the
intersection of every n + 1 members is not empty. Furthermore,
lncS is closed, hence compact. Then, Theorems 3.2 and 3.3 imply
that ker S Φ 0 .

THEOREM 3.7. Let S be a compact connected nonconvex set in
En and assume that there exists δ > 0 such that for every k-pointed
subset A c lnc S with k <; n + 1, there is a ball B of radius δ such
that all the points of B have higher visibility via S than each of
the points of A. Then the kernel of S contains a ball of radius δ.

Proof. Let B be a ball of radius δ and J%Γ be the same family
as in the previous theorem. Theorems 3.2 and 3.4 imply that kerS
includes a translate of B.

THEOREM 3.8. Let k and n be positive integers, k ^ n, and let
h(n; k) be defined by: (i) h(n; n) = n + 1; (ii) h(n; 1) = 2n; (iii)
h(n; k) = 2n — k for n > k > 1. Let S be a closed connected non-
convex set in En, and assume that lnc S is finite and such that for
each m-pointed subset A of lnc S, with m ^ h(n; k) there are k + 1
affinely independent points having higher visibility than each of
the points of A. Then the kernel of S is of dimension at least k.

Proof. Consider once more the family of visibility cells of the
points of local nonconvexity of S. The hypothesis of Theorem 3.5
holds and Theorem 3.2 implies that kerS has dimension at least k.

REMARK. Since ker S c vis(p) for each peS, the hypothesis of
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Theorem 3.6 is not only sufficient but also necessary for the validity
of the thesis. The same statement can be made about Theorems
3.7 and 3.8.
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